Arithmetic Identities Involving Bernoulli and Euler Numbers

被引:6
作者
Chu, Wenchang [1 ]
Wang, Chenying [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Bernoulli numbers; Euler numbers; trigonometric expansions; convolution formulae;
D O I
10.1007/s00025-009-0378-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the formal power series method to elementary trigonometric sums, we establish four classes of arithmetic identities involving Bernoulli and Euler numbers, including the recent formulae due to Liu and Luo (2005).
引用
收藏
页码:65 / 77
页数:13
相关论文
共 50 条
[21]   An Identity Involving the Euler Numbers [J].
Ma, Jinping .
PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2010, 9 :513-515
[22]   ON THE (r, q)-BERNOULLI AND (r, q)-EULER NUMBERS AND POLYNOMIALS [J].
Jin, Joung Hee ;
Mansour, Toufik ;
Moon, Eun-Jung ;
Park, Jin-Woo .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (02) :250-259
[23]   Explicit formulas for Euler polynomials and Bernoulli numbers [J].
Khaldi, Laala ;
Bencherif, Farid ;
Mihoubi, Miloud .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (04) :80-89
[24]   New identities and congruences for Euler numbers [J].
Maiga, Hamadoun .
ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2016, 665 :139-158
[25]   Some relations involving Bernoulli numbers [J].
Vassilev, Peter ;
Vassilev-Missana, Mladen .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2008, 14 (01) :10-12
[26]   Congruences involving generalized Catalan numbers and Bernoulli numbers [J].
Yang, Jizhen ;
Wang, Yunpeng .
AIMS MATHEMATICS, 2023, 8 (10) :24331-24344
[27]   A simple proof of convolution identities of Bernoulli numbers [J].
Yamashita, Go .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2015, 91 (01) :5-6
[29]   An Approach to Euler-Mascheroni Constant by Bernoulli Numbers [J].
Aygunes, Aykut Ahmet .
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
[30]   Some identities and congruences involving a certain family of numbers [J].
Srivastava, H. M. ;
Liu, G. -D. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (04) :536-542