Controllable Band Alignment Transition in InSe-MoS2 Van der Waals Heterostructure

被引:32
作者
Chen, Xi [1 ]
Lin, Zheng-Zhe [1 ]
Ju, Ming [2 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Shanghai Tech Inst Elect & Informat, Sch Econ & Management, Shanghai 20001820141, Peoples R China
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2018年 / 12卷 / 07期
关键词
controllable band alignment; type-III transition; two-dimensional van der Waals heterojunctions; 2-DIMENSIONAL MATERIALS; ELECTRON-MOBILITY; FIELD; LAYER; PHOTODETECTORS; DYNAMICS; GRAPHENE;
D O I
10.1002/pssr.201800102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Van der Waals (vdW) heterojunctions with type-II band alignment, in which electrons and holes are localized in distinct layers, play a central role in optoelectronic devices and solar cells. The present study analyzes a type-III band alignment transition in InSe-MoS2 vdW heterostructure, proposed to be controlled via changing interlayer distance or applying perpendicular external electric field. The band position shift of InSe relative to that of MoS2 attributes to a surface polarization mechanism. Changing band offset into type II facilitates possible use and allows greater flexibility for band engineering of InSe-MoS2 heterostructure in optoelectronic and solar energy applications. The present findings provide theoretical guidance to a new approach to improve the optoelectronic properties of vdW heterostructures.
引用
收藏
页数:6
相关论文
共 49 条
  • [21] Photoinduced doping in heterostructures of graphene and boron nitride
    Jun, L.
    Velasco, J., Jr.
    Huang, E.
    Kahn, S.
    Nosiglia, C.
    Tsai, Hsin-Zon
    Yang, W.
    Taniguchi, T.
    Watanabe, K.
    Zhang, Y.
    Zhang, G.
    Crommie, M.
    Zettl, A.
    Wang, F.
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (05) : 348 - 352
  • [22] Van der Waals density functionals applied to solids
    Klimes, Jiri
    Bowler, David R.
    Michaelides, Angelos
    [J]. PHYSICAL REVIEW B, 2011, 83 (19):
  • [23] Chemical accuracy for the van der Waals density functional
    Klimes, Jiri
    Bowler, David R.
    Michaelides, Angelos
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (02)
  • [24] Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles
    Komsa, Hannu-Pekka
    Krasheninnikov, Arkady V.
    [J]. PHYSICAL REVIEW B, 2013, 88 (08)
  • [25] The New Skinny in Two-Dimensional Nanomaterials
    Koski, Kristie J.
    Cui, Yi
    [J]. ACS NANO, 2013, 7 (05) : 3739 - 3743
  • [26] Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures
    Latini, Simone
    Winther, Kirsten T.
    Olsen, Thomas
    Thygesen, Kristian S.
    [J]. NANO LETTERS, 2017, 17 (02) : 938 - 945
  • [27] Lee CH, 2014, NAT NANOTECHNOL, V9, P676, DOI [10.1038/NNANO.2014.150, 10.1038/nnano.2014.150]
  • [28] An Atomically Layered InSe Avalanche Photodetector
    Lei, Sidong
    Wen, Fangfang
    Ge, Liehui
    Najmaei, Sina
    George, Antony
    Gong, Yongji
    Gao, Weilu
    Jin, Zehua
    Li, Bo
    Lou, Jun
    Kono, Junichiro
    Vajtai, Robert
    Ajayan, Pulickel
    Halas, Naomi J.
    [J]. NANO LETTERS, 2015, 15 (05) : 3048 - 3055
  • [29] Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field
    Li, Wei
    Wang, Tian-Xing
    Dai, Xian-Qi
    Wang, Xiao-Long
    Ma, Ya-Qiang
    Chang, Shan-Shan
    Tang, Ya-Nan
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 88 : 6 - 10
  • [30] Bandgap engineering of different stacking WS2 bilayer under an external electric field
    Li, Wei
    Wang, Tianxing
    Dai, Xianqi
    Wang, Xiaolong
    Zhai, Caiyun
    Ma, Yaqiang
    Chang, Shanshan
    [J]. SOLID STATE COMMUNICATIONS, 2016, 225 : 32 - 37