Controllable Band Alignment Transition in InSe-MoS2 Van der Waals Heterostructure

被引:33
作者
Chen, Xi [1 ]
Lin, Zheng-Zhe [1 ]
Ju, Ming [2 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Shanghai Tech Inst Elect & Informat, Sch Econ & Management, Shanghai 20001820141, Peoples R China
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2018年 / 12卷 / 07期
关键词
controllable band alignment; type-III transition; two-dimensional van der Waals heterojunctions; 2-DIMENSIONAL MATERIALS; ELECTRON-MOBILITY; FIELD; LAYER; PHOTODETECTORS; DYNAMICS; GRAPHENE;
D O I
10.1002/pssr.201800102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Van der Waals (vdW) heterojunctions with type-II band alignment, in which electrons and holes are localized in distinct layers, play a central role in optoelectronic devices and solar cells. The present study analyzes a type-III band alignment transition in InSe-MoS2 vdW heterostructure, proposed to be controlled via changing interlayer distance or applying perpendicular external electric field. The band position shift of InSe relative to that of MoS2 attributes to a surface polarization mechanism. Changing band offset into type II facilitates possible use and allows greater flexibility for band engineering of InSe-MoS2 heterostructure in optoelectronic and solar energy applications. The present findings provide theoretical guidance to a new approach to improve the optoelectronic properties of vdW heterostructures.
引用
收藏
页数:6
相关论文
共 49 条
[21]   Photoinduced doping in heterostructures of graphene and boron nitride [J].
Jun, L. ;
Velasco, J., Jr. ;
Huang, E. ;
Kahn, S. ;
Nosiglia, C. ;
Tsai, Hsin-Zon ;
Yang, W. ;
Taniguchi, T. ;
Watanabe, K. ;
Zhang, Y. ;
Zhang, G. ;
Crommie, M. ;
Zettl, A. ;
Wang, F. .
NATURE NANOTECHNOLOGY, 2014, 9 (05) :348-352
[22]   Van der Waals density functionals applied to solids [J].
Klimes, Jiri ;
Bowler, David R. ;
Michaelides, Angelos .
PHYSICAL REVIEW B, 2011, 83 (19)
[23]   Chemical accuracy for the van der Waals density functional [J].
Klimes, Jiri ;
Bowler, David R. ;
Michaelides, Angelos .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (02)
[24]   Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles [J].
Komsa, Hannu-Pekka ;
Krasheninnikov, Arkady V. .
PHYSICAL REVIEW B, 2013, 88 (08)
[25]   The New Skinny in Two-Dimensional Nanomaterials [J].
Koski, Kristie J. ;
Cui, Yi .
ACS NANO, 2013, 7 (05) :3739-3743
[26]   Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures [J].
Latini, Simone ;
Winther, Kirsten T. ;
Olsen, Thomas ;
Thygesen, Kristian S. .
NANO LETTERS, 2017, 17 (02) :938-945
[27]  
Lee CH, 2014, NAT NANOTECHNOL, V9, P676, DOI [10.1038/NNANO.2014.150, 10.1038/nnano.2014.150]
[28]   An Atomically Layered InSe Avalanche Photodetector [J].
Lei, Sidong ;
Wen, Fangfang ;
Ge, Liehui ;
Najmaei, Sina ;
George, Antony ;
Gong, Yongji ;
Gao, Weilu ;
Jin, Zehua ;
Li, Bo ;
Lou, Jun ;
Kono, Junichiro ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Halas, Naomi J. .
NANO LETTERS, 2015, 15 (05) :3048-3055
[29]   Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field [J].
Li, Wei ;
Wang, Tian-Xing ;
Dai, Xian-Qi ;
Wang, Xiao-Long ;
Ma, Ya-Qiang ;
Chang, Shan-Shan ;
Tang, Ya-Nan .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 88 :6-10
[30]   Bandgap engineering of different stacking WS2 bilayer under an external electric field [J].
Li, Wei ;
Wang, Tianxing ;
Dai, Xianqi ;
Wang, Xiaolong ;
Zhai, Caiyun ;
Ma, Yaqiang ;
Chang, Shanshan .
SOLID STATE COMMUNICATIONS, 2016, 225 :32-37