The p-Laplacian equation in thin domains: The unfolding approach

被引:15
|
作者
Arrieta, Jose M. [1 ,2 ]
Carlos Nakasato, Jean [3 ]
Correa Pereira, Marcone [3 ]
机构
[1] Univ Complutense Madrid, Dept Anal Mat & Matemat Aplicada, Madrid 28040, Spain
[2] ICMAT CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Sao Paulo, Dept Matemat Aplicada, IME, Rua Matao 1010, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
p-Laplacian; Neumann boundary condition; Thin domains; Oscillatory boundary; Homogenization; Unfolding operator method; HOMOGENIZATION; POLARIZATION;
D O I
10.1016/j.jde.2020.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we apply the so called Unfolding Operator Method to analyze the asymptotic behavior of the solutions of the p-Laplacian equation with Neumann boundary condition in a bounded thin domain of the type R-epsilon = {(x, y) is an element of R-2 : x is an element of (0, 1) and 0 < y < epsilon g (x/epsilon(alpha))} where g is a positive periodic function. We study the three cases 0 < alpha < 1, alpha = 1 and alpha > 1 representing respectively weak, resonant and high oscillations at the top boundary. In the three cases we deduce the homogenized limit and obtain correctors. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条