Parallel implementation of Newton's method for solving large-scale linear programs

被引:12
作者
Garanzha, V. A. [1 ]
Golikov, A. I. [1 ]
Evtushenko, Yu. G. [1 ]
Nguen, M. Kh. [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
linear programming; generalized Newton's method; unconstrained optimization; parallel computations;
D O I
10.1134/S096554250908003X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parallel versions of a method based on reducing a linear program (LP) to an unconstrained maximization of a concave differentiable piecewise quadratic function are proposed. The maximization problem is solved using the generalized Newton method. The parallel method is implemented in C using the MPI library for interprocessor data exchange. Computations were performed on the parallel cluster MVC-6000IM. Large-scale LPs with several millions of variables and several hundreds of thousands of constraints were solved. Results of uniprocessor and multiprocessor computations are presented.
引用
收藏
页码:1303 / 1317
页数:15
相关论文
共 15 条
[1]  
Andersen E.D., 2000, High Performance Optimization, P197, DOI [DOI 10.1007/978-1-4757-3216-08, DOI 10.1007/978-1-4757-3216-0_8]
[2]  
[Anonymous], COMP MATH MATH PHYS
[3]  
Brodal GS, 2004, LECT NOTES COMPUT SC, V3111, P3
[4]  
COLEMAN TF, 1997, P 8 SIAM C PAR PROC
[5]  
EREMIN II, 1998, LINEAR OPTIMIZATION
[6]  
Frigo Matteo., 1999, PROC 40 ANN S FDN CO, P285
[7]  
Golikov A.I., 2004, Comput. Math. Math. Phys, V44, P1484
[8]  
Golikov AI, 2004, DOKL MATH, V70, P615
[9]   On the minimum norm solution of linear programs [J].
Kanzow, C ;
Qi, H ;
Qi, L .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 116 (02) :333-345
[10]  
Kaporin IE, 1998, NUMER LINEAR ALGEBR, V5, P483, DOI 10.1002/(SICI)1099-1506(199811/12)5:6<483::AID-NLA156>3.3.CO