Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures

被引:10
作者
Koelink, Erik [1 ]
Roman, Pablo [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, Heyendaalseweg 135, NL-6525 GL Nijmegen, Netherlands
[2] Univ Nacl Cordoba, CIEM, FaMAF, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
关键词
matrix-valued measures; reducibility; matrix-valued orthogonal polynomials;
D O I
10.3842/SIGMA.2016.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A matrix-valued measure Theta reduces to measures of smaller size if there exists a constant invertible matrix M such that M Theta M* is block diagonal. Equivalently, the real vector space A of all matrices T such that T Theta(X) = Theta(X)T* for any Borel set X is non-trivial. If the subspace A(h) of self-adjoints elements in the commutant algebra A of Theta is non-trivial, then Theta is reducible via a unitary matrix. In this paper we prove that A is *-invariant if and only if A(h) = A, i.e., every reduction of Theta can be performed via a unitary matrix. The motivation for this paper comes from families of matrix-valued polynomials related to the group SU(2) x SU(2) and its quantum analogue. In both cases the commutant algebra A = A(h) circle plus iA(h) is of dimension two and the matrix-valued measures reduce unitarily into a 2 x 2 block diagonal matrix. Here we show that there is no further non-unitary reduction.
引用
收藏
页数:9
相关论文
共 12 条
  • [1] Aldenhoven N., ARXIV150703426
  • [2] Matrix-valued little q-Jacobi polynomials
    Aldenhoven, Noud
    Koelink, Erik
    de los Rios, Ana M.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 193 : 164 - 183
  • [3] Orthogonal matrix polynomials satisfying second order difference equations
    Alvarez-Nodarse, R.
    Duran, A. J.
    de los Rios, A. M.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 169 : 40 - 55
  • [4] Berg C., 2008, Coimbra Lecture Notes on Orthogonal Polynomials, P1
  • [5] Damanik D., 2008, Surveys in Approximation Theory, V4, P1
  • [6] The algebra of differential operators associated to a weight matrix
    Gruenbaum, F. Alberto
    Tirao, Juan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 58 (04) : 449 - 475
  • [7] Heckman G., TOHOKU MATH IN PRESS
  • [8] Horn R.A., 1986, Matrix Analysis
  • [9] Koelink E., ARXIV 1403 2938
  • [10] Matrix-valued Orthogonal Polynomials Related to (SU(2) x SU(2), diag), II
    Koelink, Erik
    van Pruijssen, Maarten
    Roman, Pablo
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2013, 49 (02) : 271 - 312