Poisson homology of r-matrix type orbits I:: Example of computation

被引:1
作者
Kotov, A
机构
[1] Inst Theoret & Expt Phys, Math Phys Grp, Moscow 117259, Russia
[2] Univ Angers, Dept Math, Angers, France
[3] Uppsala Univ, Dept Theoret Phys, Uppsala, Sweden
基金
俄罗斯基础研究基金会;
关键词
D O I
10.2991/jnmp.1999.6.4.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Poisson algebraic structure associated with a classical r-matrix, i.e. with a solution of the modified classical Yang-Baxter equation. In Section 1 we recall the concept and basic facts of the r-matrix type Poisson orbits. Then we describe the r-matrix Poisson pencil (i.e the pair of compatible Poisson structures) of rank 1 or CPn-type orbits of SL(n, C). Here we calculate symplectic leaves and the integrable foliation associated with the pencil. We also describe the algebra of functions n CPn-type orbits. In Section 2 we calculate the Poisson homology of Drinfeld-Sklyanin Poisson brackets which belong to the r-matrix Poisson family.
引用
收藏
页码:365 / 383
页数:19
相关论文
共 31 条
[21]   On the geometric quantization of R-matrix-type Poisson brackets [J].
Kotov, AY .
THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 112 (02) :988-994
[22]  
Lichnerowicz A., 1977, J DIFFER GEOM, V12, P253, DOI [DOI 10.4310/JDG/1214433987, 10.4310/jdg/1214433987]
[23]  
LU JH, 1990, J DIFFER GEOM, V31, P501
[24]   HARMONIC COHOMOLOGY CLASSES OF SYMPLECTIC-MANIFOLDS [J].
MATHIEU, O .
COMMENTARII MATHEMATICI HELVETICI, 1995, 70 (01) :1-9
[25]  
Mathieu O, 1997, MATH PHYS S, V20, P177
[26]  
PAPADOPULO G, 1998, 013 U STRASB
[27]   DRESSING TRANSFORMATIONS AND POISSON GROUP-ACTIONS [J].
SEMENOVTIANSHANSKY, MA .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1985, 21 (06) :1237-1260
[28]   ON THE GEOMETRIC-QUANTIZATION OF POISSON MANIFOLDS [J].
VAISMAN, I .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3339-3345
[29]  
WEINSTEIN A, 1996, MODULAR AUTOMORPHISM
[30]  
XU P, DAGA9703001