Poisson homology of r-matrix type orbits I:: Example of computation

被引:1
作者
Kotov, A
机构
[1] Inst Theoret & Expt Phys, Math Phys Grp, Moscow 117259, Russia
[2] Univ Angers, Dept Math, Angers, France
[3] Uppsala Univ, Dept Theoret Phys, Uppsala, Sweden
基金
俄罗斯基础研究基金会;
关键词
D O I
10.2991/jnmp.1999.6.4.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Poisson algebraic structure associated with a classical r-matrix, i.e. with a solution of the modified classical Yang-Baxter equation. In Section 1 we recall the concept and basic facts of the r-matrix type Poisson orbits. Then we describe the r-matrix Poisson pencil (i.e the pair of compatible Poisson structures) of rank 1 or CPn-type orbits of SL(n, C). Here we calculate symplectic leaves and the integrable foliation associated with the pencil. We also describe the algebra of functions n CPn-type orbits. In Section 2 we calculate the Poisson homology of Drinfeld-Sklyanin Poisson brackets which belong to the r-matrix Poisson family.
引用
收藏
页码:365 / 383
页数:19
相关论文
共 31 条
[1]  
BRYLINSKI JL, 1988, J DIFFER GEOM, V28, P93
[2]  
BRYLINSKI JL, MATHDG9802014
[3]  
DONIN J, 1992, QUANTIZATION R MATRI
[4]  
DONIN J, MATHQA9803155
[5]  
DRINFELD VG, 1986, P ICM BERKELEY, V1, P789
[6]  
EVENS S, 1996, TRANSVERSE MEASURES
[7]  
EVENS S, DGGA9711019
[8]   HOCHSCHILD AND CYCLIC HOMOLOGY OF QUANTUM GROUPS [J].
FENG, P ;
TSYGAN, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (03) :481-521
[9]  
Fernandez M., 1996, ARCH MATH BRNO, V32, P29
[10]  
FRESSE B, 1998, PREPUBL U NICE, V524