Deformable Convolutional Neuron Network Model for Detecting Tables and Columns from Document Images

被引:0
作者
Lee, Wen-Tin [1 ]
Huang, Chuan-Chun [1 ]
机构
[1] Natl Kaohsiung Normal Univ, Dept Software Engn & Management, Kaohsiung 802, Taiwan
关键词
table detection; table structure recognition; column identification; deformable CNN; deep learning;
D O I
10.6688/JISE.202211_38(6).0011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tables are usually used to present the main points of a document so that readers can quickly understand the content of the document. This study proposed a novel deformable convolutional neural network model for table detection to identify and extract tables from electronic document images. The model can perform table detection and table structure recognition at the same time, and more effectively detect the location of tables and columns. The proposed model is evaluated using Marmot extended dataset and the experimental results show that the table detection cycle is reduced, the computation time is shortened, and the overall efficiency is improved. Compared with other studies, the proposed model has achieved better table detection results in terms of precision, recall, and F1-score.
引用
收藏
页码:1305 / 1315
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2014, Handbook of Document Image Processing and Recognition, DOI DOI 10.1007/978-0-85729-859-120
[2]  
[Anonymous], 2010, International journal of computer vision, DOI DOI 10.1007/s11263-009-0275-4
[3]   Metrics for evaluating performance in document analysis: application to tables [J].
Costa e Silva, Ana .
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2011, 14 (01) :101-109
[4]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[5]  
e Silva Ana Costa, 2009, 2009 10th International Conference on Document Analysis and Recognition (ICDAR), P843, DOI 10.1109/ICDAR.2009.185
[6]   Table-processing paradigms: a research survey [J].
Embley, David W. ;
Hurst, Matthew ;
Lopresti, Daniel ;
Nagy, George .
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2006, 8 (2-3) :66-86
[7]   A Table Detection Method for PDF Documents Based on Convolutional Neural Networks [J].
Hao, Leipeng ;
Gao, Liangcai ;
Yi, Xiaohan ;
Tang, Zhi .
PROCEEDINGS OF 12TH IAPR WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS, (DAS 2016), 2016, :287-292
[8]   Learning to Detect Tables in Scanned Document Images using Line Information [J].
Kasar, T. ;
Barlas, P. ;
Adam, S. ;
Chatelain, C. ;
Paquet, T. .
2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, :1185-1189
[9]  
Kavasidis I, 2018, Arxiv, DOI arXiv:1804.06236
[10]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324