Macrophages in intestinal homeostasis and inflammation

被引:477
作者
Bain, Calum C. [1 ]
Mowat, Allan McI [1 ]
机构
[1] Univ Glasgow, Inst Infect Immun & Inflammat, Ctr Immunobiol, Glasgow G12 8TA, Lanark, Scotland
基金
英国惠康基金;
关键词
intestine; macrophages; monocytes; homeostasis; inflammation; ALTERNATIVELY ACTIVATED MACROPHAGES; MONONUCLEAR PHAGOCYTE SYSTEM; LAMINA-PROPRIA MACROPHAGES; GENE-EXPRESSION PROFILES; CD103(+) DENDRITIC CELLS; BOWEL-DISEASE; LANGERHANS CELLS; BLOOD MONOCYTES; BONE-MARROW; ANTIINFLAMMATORY MACROPHAGES;
D O I
10.1111/imr.12192
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD.
引用
收藏
页码:102 / 117
页数:16
相关论文
共 147 条
[11]   Origin of the Lamina Propria Dendritic Cell Network [J].
Bogunovic, Milena ;
Ginhoux, Florent ;
Helft, Julie ;
Shang, Limin ;
Hashimoto, Daigo ;
Greter, Melanie ;
Liu, Kang ;
Jakubzick, Claudia ;
Ingersoll, Molly A. ;
Leboeuf, Marylene ;
Stanley, E. Richard ;
Nussenzweig, Michel ;
Lira, Sergio A. ;
Randolph, Gwendalyn J. ;
Merad, Miriam .
IMMUNITY, 2009, 31 (03) :513-525
[12]   Arginase-1-expressing macrophages are dispensable for resistance to infection with the gastrointestinal helminth Trichuris muris [J].
Bowcutt, R. ;
Bell, L. V. ;
Little, M. ;
Wilson, J. ;
Booth, C. ;
Murray, P. J. ;
Else, K. J. ;
Cruickshank, S. M. .
PARASITE IMMUNOLOGY, 2011, 33 (07) :411-420
[13]   Defining the anatomical localisation of subsets of the murine mononuclear phagocyte system using integrin alpha X (Itgax, CD11c) and colony stimulating factor 1 receptor (Csf1r, CD115) expression fails to discriminate dendritic cells from macrophages [J].
Bradford, Barry M. ;
Sester, David P. ;
Hume, David A. ;
Mabbott, Neil A. .
IMMUNOBIOLOGY, 2011, 216 (11) :1228-1237
[14]   Common γ-Chain-Dependent Signals Confer Selective Survival of Eosinophils in the Murine Small Intestine [J].
Carlens, Julia ;
Wahl, Benjamin ;
Ballmaier, Matthias ;
Bulfone-Paus, Silvia ;
Foerster, Reinhold ;
Pabst, Oliver .
JOURNAL OF IMMUNOLOGY, 2009, 183 (09) :5600-5607
[15]   Nr4a1-Dependent Ly6Clow Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal [J].
Carlin, Leo M. ;
Stamatiades, Efstathios G. ;
Auffray, Cedric ;
Hanna, Richard N. ;
Glover, Leanne ;
Vizcay-Barrena, Gema ;
Hedrick, Catherine C. ;
Cook, H. Terence ;
Diebold, Sandra ;
Geissmann, Frederic .
CELL, 2013, 153 (02) :362-375
[16]   The proportion of CD40+ mucosal macrophages is increased in inflammatory bowel disease whereas CD40 ligand (CD154)+ T cells are relatively decreased, suggesting differential modulation of these costimulatory molecules in human gut lamina propria [J].
Carlsen, Hege S. ;
Yamanaka, Takeshi ;
Scott, Helge ;
Rugtveit, Jarle ;
Brandtzaeg, Per .
INFLAMMATORY BOWEL DISEASES, 2006, 12 (11) :1013-1024
[17]   Intestinal CD103- dendritic cells migrate in lymph and prime effector T cells [J].
Cerovic, V. ;
Houston, S. A. ;
Scott, C. L. ;
Aumeunier, A. ;
Yrlid, U. ;
Mowat, A. M. ;
Milling, S. W. F. .
MUCOSAL IMMUNOLOGY, 2013, 6 (01) :104-113
[18]   Circulatory Antigen Processing by Mucosal Dendritic Cells Controls CD8+ T Cell Activation [J].
Chang, Sun-Young ;
Song, Joo-Hye ;
Guleng, Bayasi ;
Cotoner, Carmen Alonso ;
Arihiro, Seiji ;
Zhao, Yun ;
Chiang, Hao-Sen ;
O'Keeffe, Michael ;
Liao, Gongxian ;
Karp, Christopher L. ;
Kweon, Mi-Na ;
Sharpe, Arlene H. ;
Bhan, Atul ;
Terhorst, Cox ;
Reinecker, Hans-Christian .
IMMUNITY, 2013, 38 (01) :153-165
[19]   TGF-β1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia [J].
Chen, SZ ;
Luo, DF ;
Streit, WJ ;
Harrison, JK .
JOURNAL OF NEUROIMMUNOLOGY, 2002, 133 (1-2) :46-55
[20]   Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement [J].
Chieppa, Marcello ;
Rescigno, Maria ;
Huang, Alex Y. C. ;
Germain, Ronald N. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2006, 203 (13) :2841-2852