Multiple Soliton Solutions of the Sawada-Kotera Equation with a Nonvanishing Boundary Condition and the Perturbed Korteweg de Vries Equation by Using the Multiple Exp-Function Scheme

被引:9
作者
Adem, Abdullahi Rashid [1 ]
Mirzazadeh, Mohammad [2 ]
Zhou, Qin [3 ]
Hosseini, Kamyar [4 ]
机构
[1] North West Univ, Dept Math Sci, Private Bag X 2046, ZA-2735 Mmabatho, South Africa
[2] Univ Guilan, East Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar 4489163157, Iran
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[4] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran
基金
中国国家自然科学基金;
关键词
BACKLUND TRANSFORMATION; CONSERVATION-LAWS; WAVE SOLUTIONS; ROGUE WAVES; LAX PAIR; ORDER;
D O I
10.1155/2019/3175213
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Sawada-Kotera equation with a nonvanishing boundary condition, which models the evolution of steeper waves of shorter wavelength than those depicted by the Korteweg de Vries equation, is analyzed and also the perturbed Korteweg de Vries (pKdV) equation. For this goal, a capable method known as the multiple exp-function scheme (MEFS) is formally utilized to derive the multiple soliton solutions of the models. The MEFS as a generalization of Hirota's perturbation method actually suggests a systematic technique to handle nonlinear evolution equations (NLEEs).
引用
收藏
页数:5
相关论文
共 22 条
[1]   Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma [J].
Du, Xia-Xia ;
Tian, Bo ;
Wu, Xiao-Yu ;
Yin, Hui-Min ;
Zhang, Chen-Rong .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09)
[2]   Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber [J].
Du, Zhong ;
Tian, Bo ;
Chai, Han-Peng ;
Sun, Yan ;
Zhao, Xue-Hui .
CHAOS SOLITONS & FRACTALS, 2018, 109 :90-98
[3]   Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas [J].
Gao, Xin-Yi .
APPLIED MATHEMATICS LETTERS, 2019, 91 :165-172
[4]   RESONANCE OF SOLITONS IN ONE DIMENSION [J].
HIROTA, R ;
ITO, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (03) :744-748
[5]  
胡星标, 1991, [数学物理学报. A辑, Acta Mathematica Scientia], V11, P164
[6]   Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations [J].
Liu, Lei ;
Tian, Bo ;
Yuan, Yu-Qiang ;
Du, Zhong .
PHYSICAL REVIEW E, 2018, 97 (05)
[7]   Backlund transformation, superposition formulae and N-soliton solutions for the perturbed Korteweg-de Vries equation [J].
Liu, Li-Cai ;
Tian, Bo ;
Qin, Bo ;
Lu, Xing ;
Lin, Zhi-Qiang ;
Liu, Wen-Jun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2394-2402
[8]   Reactive Behavioral Strategy for Unmanned Ground Vehicle under Liner Temporal Logic Specifications [J].
Liu, Liangguo ;
Peng, Jun ;
Zhang, Xiaoyong ;
Zhang, Rui ;
Chen, Bin ;
Gao, Kai ;
Yang, Yingze .
2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, :133-140
[9]   Soliton behavior for a generalized mixed nonlinear Schrodinger model with N-fold Darboux transformation [J].
Lu, Xing .
CHAOS, 2013, 23 (03)
[10]   Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics [J].
Lu, Xing ;
Peng, Mingshu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (09) :2304-2312