Compact Micro Thermal Sensor Based on Silicon Thermocouple Junction and Suspended Fluidic Channel

被引:6
作者
Wang, Zhuqing [1 ]
Kimura, Mitsuteru [2 ]
Inomata, Naoki [1 ]
Li, Jinhua [1 ]
Ono, Takahito [1 ]
机构
[1] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi 9808579, Japan
[2] Tohoku Gakuin Univ, Dept Elect, Sendai, Miyagi 9808511, Japan
关键词
Silicon; Sensitivity; Junctions; Heating systems; Temperature sensors; thermocouple; suspended fluidic channel; thermal sensor; MEMS; CHIP CALORIMETER; BIOSENSOR; THERMOPILE;
D O I
10.1109/JSEN.2020.2997926
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This research proposed a micro biochemical thermal sensor with compact integration capability by combining a novel single thermocouple junction and suspended microfluidic channel. While the thermal sensor was fabricated through standard MEMS processes on the silicon-on-insulator (SOI) wafer, a heavily-doped silicon of high Seebeck coefficient was employed as the highly sensitive material for thermocouple junction. To enable a high sensitivity and fast response detection, a unique structure of air-suspended bridge and a built-on SU-8 polymer microfluidic channel was fabricated to reduce heat loss and sample loading dose for trace amount of heat detection. As high as a sensitivity of 0.27 V/W and rapid thermal response less than 200 ms are achieved in this thermal sensor, which allows for the enzymatic bio-reaction heat detection and laid great potential for portable healthcare applications.
引用
收藏
页码:11122 / 11127
页数:6
相关论文
共 30 条
[1]   Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes [J].
Baier, V ;
Födisch, R ;
Ihring, A ;
Kessler, E ;
Lerchner, J ;
Wolf, G ;
Köhler, JM ;
Nietzsch, M ;
Krügel, M .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 123-24 :354-359
[2]   Immobilization of catalase via adsorption on poly(styrene-d-glycidylmethacrylate) grafted and tetraethyldiethylenetriamine ligand attached microbeads [J].
Bayramoglu, Gulay ;
Karagoz, Bunyamin ;
Yilmaz, Meltem ;
Bicak, Niyazi ;
Arica, M. Yakup .
BIORESOURCE TECHNOLOGY, 2011, 102 (04) :3653-3661
[3]   PDMS-based microfluidic devices for biomedical applications [J].
Fujii, T .
MICROELECTRONIC ENGINEERING, 2002, 61-2 :907-914
[4]   Remote calorimetric detection of urea via flow injection analysis [J].
Gaddes, David E. ;
Demirel, Melik C. ;
Reeves, W. Brian ;
Tadigadapa, Srinivas .
ANALYST, 2015, 140 (23) :8033-8040
[5]   A new micro-fluid chip calorimeter for biochemical applications [J].
Lerchner, J ;
Wolf, A ;
Wolf, G ;
Baier, V ;
Kessler, E ;
Nietzsche, M ;
Krügel, M .
THERMOCHIMICA ACTA, 2006, 445 (02) :144-150
[6]   Microfluidic flow rate detection based on integrated optical fiber cantilever [J].
Lien, Victor ;
Vollmer, Frank .
LAB ON A CHIP, 2007, 7 (10) :1352-1356
[7]   Feeding aquaculture in an era of finite resources [J].
Naylor, Rosamond L. ;
Hardy, Ronald W. ;
Bureau, Dominique P. ;
Chiu, Alice ;
Elliott, Matthew ;
Farrell, Anthony P. ;
Forster, Ian ;
Gatlin, Delbert M. ;
Goldburg, Rebecca J. ;
Hua, Katheline ;
Nichols, Peter D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) :15103-15110
[8]   Development of a thermal sensor to probe cell viability and concentration in cell suspensions [J].
Park, Byoung Kyoo ;
Yi, Namwoo ;
Park, Jaesung ;
Kim, Yonggoo ;
Kim, Dongsik .
AIP ADVANCES, 2014, 4 (04)
[9]   A micro-thermoelectric gas sensor for detection of hydrogen and atomic oxygen [J].
Park, Se-Chul ;
Yoon, Seung-Il ;
Lee, Chung-il ;
Kim, Yong-Jun ;
Song, Soonho .
ANALYST, 2009, 134 (02) :236-242
[10]   Monitoring biochemical reactions using Y-cut quartz thermal sensors [J].
Ren, Kailiang ;
Kao, Ping ;
Pisani, Marcelo B. ;
Tadigadapa, Srinivas .
ANALYST, 2011, 136 (14) :2904-2911