Quantised feedback sliding mode control of linear uncertain systems

被引:31
作者
Zheng, Bo-Chao [1 ]
Yang, Guang-Hong [2 ,3 ]
Li, Tao [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, Nanjing 210044, Jiangsu, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[3] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China
关键词
DISCRETE-TIME-SYSTEMS; INPUT QUANTIZATION; STABILIZATION; DISTURBANCES; DESIGN;
D O I
10.1049/iet-cta.2013.0359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study is concerned with the quantised feedback stabilisation problem for a class of uncertain linear systems by utilising sliding mode control schemes. It is an extension of our previous work from single-input linear systems with matched uncertainties to multi-input linear systems with matched/mismatched uncertainties. By applying an designed adjustment policy of the quantisation parameter, the proposed quantised feedback sliding mode control law can effectively eliminate the influence of the matched/mismatched uncertainties and guarantee the arrival of the sliding motion. Finally, an example is provided to illustrate the effectiveness of the proposed approach.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
  • [31] Anti-disturbance sliding mode control for uncertain nonlinear systems
    Liu, Xinxin
    Su, Xiaojie
    Li, Rui
    Shi, Peng
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (12) : 3001 - 3011
  • [32] Sliding Mode Control for a Class of Unmatched Uncertain Linear System
    Zhao, Zhanshan
    Sun, Liankun
    Zhang, Jing
    [J]. EQUIPMENT MANUFACTURING TECHNOLOGY, 2012, 422 : 846 - +
  • [33] Delta-Modulator-Based Quantised Output Feedback Controller for Linear Networked Control Systems
    Wanigasekara, Chathura
    Almakhles, Dhafer
    Swain, Akshya
    Nguang, Sing Kiong
    [J]. IEEE ACCESS, 2020, 8 : 175169 - 175179
  • [34] Event-triggered integral sliding mode control for uncertain networked linear control systems with quantization
    Zhao, Xinggui
    Meng, Bo
    Wang, Zhen
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 16705 - 16724
  • [35] Output feedback integral sliding mode predictive control for linear discrete time systems
    Xiao, Huili
    Zhang, Shuzhan
    Zhao, Dongya
    Yan, Xinggang
    Spurgeon, Sarah K.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2024, 80
  • [36] Adaptive fuzzy sliding mode control of input-delayed uncertain nonlinear systems through output-feedback
    Khazaee, Mostafa
    Markazi, Amir H. D.
    Rizi, Saeed T.
    Seyfi, Behzad
    [J]. NONLINEAR DYNAMICS, 2017, 87 (03) : 1943 - 1956
  • [37] Sliding mode optimal control for linear systems
    Basin, Michael
    Rodriguez-Ramirez, Pablo
    Ferrara, Antonella
    Calderon-Alvarez, Dario
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (04): : 1350 - 1363
  • [38] Sliding-Mode Control for Linear Uncertain Systems With Impulse Effects via Switching Gains
    Chen, Wu-Hua
    Deng, Xiaoqing
    Zheng, Wei Xing
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) : 2044 - 2051
  • [39] Fuzzy sliding mode control scheme for a class of non-linear uncertain chaotic systems
    Niknam, Taher
    Khooban, Mohammad Hassan
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2013, 7 (05) : 249 - 255
  • [40] ROBUST SLIDING MODE CONTROL FOR UNCERTAIN LINEAR DISCRETE SYSTEMS INDEPENDENT OF TIME-DELAY
    Lin, Zhiwei
    Xia, Yuanqing
    Shi, Peng
    Wu, Harris
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (02): : 869 - 880