Symmetry Preserving Discretization of SL(2,R) Invariant Equations

被引:17
|
作者
Bourlioux, Anne [1 ]
Rebelo, Raphael [2 ,3 ]
Winternitz, Pavel [1 ,2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.2991/jnmp.2008.15.s3.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear ODEs invariant under the group SL(2,R) are solved numerically. We show that solution methods incorporating the Lie point symmetries provide better results than standard methods.
引用
收藏
页码:362 / 372
页数:11
相关论文
共 50 条
  • [41] POLYNOMIAL SOLUTIONS OF DIFFERENTIAL EQUATIONS ON THE GROUP SL(2, R)
    Georgieva, Atanaska
    Melemov, Hristo
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (04): : 847 - 858
  • [42] EXACT-SOLUTIONS OF SL(N,R)-INVARIANT CHIRAL EQUATIONS ONE-DIMENSIONAL AND 2-DIMENSIONAL SUBSPACES
    MATOS, T
    RODRIGUEZ, G
    BECERRIL, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) : 3521 - 3535
  • [43] Invariant preserving schemes for double dispersion equations
    Natalia Kolkovska
    Veselina Vucheva
    Advances in Difference Equations, 2019
  • [44] Invariant preserving schemes for double dispersion equations
    Kolkovska, Natalia
    Vucheva, Veselina
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [45] Symmetry-Preserving Discretization of Heat Transfer in a Complex Turbulent Flow
    R. W. C. P. Verstappen
    R. M. Van Der Velde
    Journal of Engineering Mathematics, 2006, 54 : 299 - 318
  • [46] Some Examples of Isotropic SL(2, R)-Invariant Subbundles of the Hodge Bundle
    Matheus, Carlos
    Weitze-Schmithuesen, Gabriela
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8657 - 8679
  • [47] Matrix logarithms and range of the exponential maps for the symmetry groups SL(2, R), SL(2, C), and the Lorentz group
    Qiao, Zhiqian
    Dick, Rainer
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (07):
  • [48] Symmetry-preserving discretization of heat transfer in a complex turbulent flow
    Verstappen, RWCP
    Van der Velde, RM
    JOURNAL OF ENGINEERING MATHEMATICS, 2006, 54 (04) : 299 - 318
  • [49] Discretization of hyperbolic type Darboux integrable equations preserving integrability
    Habibullin, Ismagil
    Zheltukhina, Natalya
    Sakieva, Alfia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [50] An energy-preserving discretization for the Poisson–Nernst–Planck equations
    Allen Flavell
    Julienne Kabre
    Xiaofan Li
    Journal of Computational Electronics, 2017, 16 : 431 - 441