Symmetry Preserving Discretization of SL(2,R) Invariant Equations

被引:17
作者
Bourlioux, Anne [1 ]
Rebelo, Raphael [2 ,3 ]
Winternitz, Pavel [1 ,2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.2991/jnmp.2008.15.s3.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear ODEs invariant under the group SL(2,R) are solved numerically. We show that solution methods incorporating the Lie point symmetries provide better results than standard methods.
引用
收藏
页码:362 / 372
页数:11
相关论文
共 7 条
  • [1] Difference schemes with point symmetries and their numerical tests
    Bourlioux, A.
    Cyr-Gagnon, C.
    Winternitz, P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 6877 - 6896
  • [2] Continuous symmetries of Lagrangians and exact solutions of discrete equations
    Dorodnitsyn, V
    Kozlov, R
    Winternitz, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) : 336 - 359
  • [3] DORODNITSYN V, 2001, GROUP PROPERTIES DIF
  • [4] Continuous symmetries of difference equations
    Levi, D
    Winternitz, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02): : R1 - R63
  • [5] Lie point symmetries of difference equations and lattices
    Levi, D
    Tremblay, S
    Winternitz, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8507 - 8523
  • [6] Olver P. J., 2000, APPL LIE GROUPS DIFF
  • [7] Lie symmetries and exact solutions of first-order difference schemes
    Rodríguez, MA
    Winternitz, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23): : 6129 - 6142