Symmetry Preserving Discretization of SL(2,R) Invariant Equations

被引:17
作者
Bourlioux, Anne [1 ]
Rebelo, Raphael [2 ,3 ]
Winternitz, Pavel [1 ,2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.2991/jnmp.2008.15.s3.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear ODEs invariant under the group SL(2,R) are solved numerically. We show that solution methods incorporating the Lie point symmetries provide better results than standard methods.
引用
收藏
页码:362 / 372
页数:11
相关论文
共 7 条
[1]   Difference schemes with point symmetries and their numerical tests [J].
Bourlioux, A. ;
Cyr-Gagnon, C. ;
Winternitz, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6877-6896
[2]   Continuous symmetries of Lagrangians and exact solutions of discrete equations [J].
Dorodnitsyn, V ;
Kozlov, R ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) :336-359
[3]  
DORODNITSYN V, 2001, GROUP PROPERTIES DIF
[4]   Continuous symmetries of difference equations [J].
Levi, D ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02) :R1-R63
[5]   Lie point symmetries of difference equations and lattices [J].
Levi, D ;
Tremblay, S ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47) :8507-8523
[6]  
Olver P. J., 2000, APPL LIE GROUPS DIFF
[7]   Lie symmetries and exact solutions of first-order difference schemes [J].
Rodríguez, MA ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23) :6129-6142