Green's Function Method for Self-Adjoint Realization of Boundary-Value Problems with Interior Singularities

被引:19
作者
Aydemir, K. [1 ]
Mukhtarov, O. Sh [1 ]
机构
[1] Gaziosmanpasa Univ, Fac Arts & Sci, Dept Math, TR-60250 Tokat, Turkey
关键词
STURM-LIOUVILLE PROBLEMS;
D O I
10.1155/2013/503267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to investigate some spectral properties of Sturm-Liouville type problems with interior singularities. Some of the mathematical aspects necessary for developing our own technique are presented. By applying this technique we construct some special solutions of the homogeneous equation and present a formula and the existence conditions of Green's function. Furthermore, based on these results and introducing operator treatment in adequate Hilbert space, we derive the resolvent operator and prove self-adjointness of the considered problem.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1850, J REINE ANGEW MATH
[2]   The finite spectrum of Sturm-Liouville problems with transmission conditions [J].
Ao, Ji-jun ;
Sun, Jiong ;
Zhang, Mao-zhu .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) :1166-1173
[3]  
Appell P., 1892, J MATH PURE APPL, V8, P187
[4]   The determinants of dissipative Sturm-Liouville operators with transmission conditions [J].
Bairamov, Elgiz ;
Ugurlu, Ekin .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) :805-813
[5]  
Burkhardt, 1894, B SOC MATH FR, V22, P71, DOI DOI 10.24033/BSMF.484
[6]   Sturm-Liouville problems with impulse effects [J].
Chanane, B. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :610-626
[7]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308
[8]  
Hobson E., 1887, P LOND MATH SOC, V1, P279
[9]   Discontinuous Sturm-Liouville problems containing eigenparameter in the boundary conditions [J].
Kadakal, M. ;
Mukhtarov, O. Sh. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) :1519-1528
[10]  
Kirchhoff G., 1883, Annalen der Physik, V254, P663, DOI [10.1002/andp.18832540409, DOI 10.1002/ANDP.18832540409]