A non-abelian Hom-Leibniz tensor product and applications

被引:6
|
作者
Casas, J. M. [1 ]
Khmaladze, E. [2 ,3 ]
Pacheco Rego, N. [4 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Pontevedra, Spain
[2] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Tbilisi, Georgia
[3] Univ Georgia, Tbilisi, Georgia
[4] IPCA, Dept Ciencias, Campus IPCA, Barcelos, Portugal
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 06期
基金
美国国家科学基金会;
关键词
Hom-Leibniz algebra; non-abelian tensor product; universal (alpha)-central extension; Hom-associative algebra; Hochschild homology; LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.1080/03081087.2017.1338651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of non-abelian Hom-Leibniz tensor product is introduced and some properties are established. This tensor product is used in the description of the universal (a-) central extensions of Hom-Leibniz algebras. We also give its application to the Hochschild homology of Hom-associative algebras.
引用
收藏
页码:1133 / 1152
页数:20
相关论文
共 50 条
  • [1] A non-abelian tensor product of Leibniz algebras
    Gnedbaye, AV
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1149 - +
  • [2] A Non-abelian Tensor Product of Hom–Lie Algebras
    J. M. Casas
    E. Khmaladze
    N. Pacheco Rego
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1035 - 1054
  • [3] A Non-abelian Tensor Product of Hom-Lie Algebras
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1035 - 1054
  • [4] The non-abelian tensor product and the second homology of Leibniz algebras
    Hosseini, Seyedeh Narges
    Edalatzadeh, Behrouz
    Salemkar, Ali Reza
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 759 - 770
  • [5] Non-abelian tensor product of Leibniz algebras and an exact sequence in Leibniz homology
    Casas, JM
    Ladra, M
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (09) : 4639 - 4646
  • [6] Hom-Leibniz superalgebras and hom-Leibniz poisson superalgebras
    Wang, Chunyue
    Zhang, Qingcheng
    Wei, Zhu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 1163 - 1179
  • [7] On Hom-Leibniz Superalgebras
    Teng, Wen
    You, Taijie
    Ke, Yuanyuan
    FILOMAT, 2022, 36 (08) : 2591 - 2603
  • [8] The Classical Hom-Leibniz Yang-Baxter Equation and Hom-Leibniz Bialgebras
    Guo, Shuangjian
    Wang, Shengxiang
    Zhang, Xiaohui
    MATHEMATICS, 2022, 10 (11)
  • [9] On some properties preserved by the non-abelian tensor product of Hom-Lie algebras
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04): : 607 - 626
  • [10] On the Non-abelian Tensor Product of Groups
    Moghaddam, Mohammad Reza R.
    Mirzaei, Fateme
    ALGEBRA COLLOQUIUM, 2011, 18 (03) : 429 - 436