Endothelial inwardly-rectifying K+ channels as a key component of shear stress-induced mechanotransduction

被引:7
作者
Fancher, Ibra S. [1 ]
Levitan, Irena [1 ]
机构
[1] Univ Illinois, Dept Med, Div Pulm Crit Care Sleep & Allergy, Chicago, IL 60607 USA
来源
ION CHANNELS AND CALCIUM SIGNALING IN THE MICROCIRCULATION | 2020年 / 85卷
关键词
NITRIC-OXIDE SYNTHASE; FLOW-INDUCED DILATION; POTASSIUM CHANNELS; CATION CHANNEL; ION CHANNELS; CHOLESTEROL; CELLS; ACTIVATION; KIR2.1; IDENTIFICATION;
D O I
10.1016/bs.ctm.2020.02.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has been recognized for decades that fluid shear stress plays a major role in vascular function. Acting on the endothelium shear stress induces vasorelaxation of resistance arteries and plays a major role in the propensity of the major arteries to atherosclerosis. Many elements of shear-induced signaling have been identified yet we are just beginning to decipher the roles that mechanosensitive ion channels may play in the signaling pathways initiated by shear stress. Endothelial inwardly-rectifying K+ channels were identified as potential primary mechanosensors in the late 1980s yet until our recent works, highlighted in the forthcoming chapter, the functional effect of a shear-activated K+ current was completely unknown. In this chapter, we present the physiological effects of shear stress in arteries in health and disease and highlight the most prevalent of today's investigated mechanosensitive ion channels. Ultimately, we focus on Kir2.1 channels and discuss in detail our findings regarding the downstream signaling events that are induced by shear-activated endothelial Kir2.1 channels. Most importantly, we examine our findings regarding hypercholesterolemia-induced inhibition of Kir channel shear-sensitivity and the impact on endothelial function in the context of flow (shear)-mediated vasodilation and atherosclerosis.
引用
收藏
页码:59 / 88
页数:30
相关论文
共 94 条
[1]   Inwardly rectifying K+ channels are major contributors to flow-induced vasodilatation in resistance arteries [J].
Ahn, Sang Joon ;
Fancher, Ibra S. ;
Bian, Jing-Tan ;
Zhang, Chong Xu ;
Schwab, Sarah ;
Gaffin, Robert ;
Phillips, Shane A. ;
Levitan, Irena .
JOURNAL OF PHYSIOLOGY-LONDON, 2017, 595 (07) :2339-2364
[2]   Hypotonic Challenge of Endothelial Cells Increases Membrane Stiffness with No Effect on Tether Force [J].
Ayee, Manuela Aseye Ayele ;
LeMaster, Elizabeth ;
Teng, Tao ;
Lee, James ;
Levitan, Irena .
BIOPHYSICAL JOURNAL, 2018, 114 (04) :929-938
[3]   Endothelial fluid shear stress sensing in vasculr health and disease [J].
Baeyens, Nicolas ;
Bandyopadhyay, Chirosree ;
Coon, Brian G. ;
Yun, Sanguk ;
Schwartz, Martin A. .
JOURNAL OF CLINICAL INVESTIGATION, 2016, 126 (03) :821-828
[4]   Molecular Dynamics Simulations of Kir2.2 Interactions with an Ensemble of Cholesterol Molecules [J].
Barbera, Nicolas ;
Ayee, Manuela A. A. ;
Akpa, Belinda S. ;
Levitan, Irena .
BIOPHYSICAL JOURNAL, 2018, 115 (07) :1264-1280
[5]  
Boriushkin Evgenii, 2019, Cell Physiol Biochem, V52, P1569, DOI 10.33594/000000109
[6]   Genetic Deficit of SK3 and IK1 Channels Disrupts the Endothelium-Derived Hyperpolarizing Factor Vasodilator Pathway and Causes Hypertension [J].
Braehler, Sebastian ;
Kaistha, Anuradha ;
Schmidt, Volker J. ;
Woelfle, Stephanie E. ;
Busch, Christoph ;
Kaistha, Brajesh P. ;
Kacik, Michael ;
Hasenau, Anna-Lena ;
Grgic, Ivica ;
Si, Han ;
Bond, Chris T. ;
Adelman, John P. ;
Wulff, Heike ;
de Wit, Cor ;
Hoyer, Joachim ;
Koehler, Ralf .
CIRCULATION, 2009, 119 (17) :2323-U63
[7]   Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling - Molecular, cellular, and vascular behavior [J].
Chatzizisis, Yiannis S. ;
Coskun, Ahmet Umit ;
Jonas, Michael ;
Edelman, Elazer R. ;
Feldman, Charles L. ;
Stone, Peter H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2007, 49 (25) :2379-2393
[8]   Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development [J].
Chouinard-Pelletier, Guillaume ;
Jahnsen, Espen D. ;
Jones, Elizabeth A. V. .
ANGIOGENESIS, 2013, 16 (01) :71-83
[9]   Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1 [J].
Conway, Daniel E. ;
Breckenridge, Mark T. ;
Hinde, Elizabeth ;
Gratton, Enrico ;
Chen, Christopher S. ;
Schwartz, Martin A. .
CURRENT BIOLOGY, 2013, 23 (11) :1024-1030
[10]   Piezo proteins are pore-forming subunits of mechanically activated channels [J].
Coste, Bertrand ;
Xiao, Bailong ;
Santos, Jose S. ;
Syeda, Ruhma ;
Grandl, Joerg ;
Spencer, Kathryn S. ;
Kim, Sung Eun ;
Schmidt, Manuela ;
Mathur, Jayanti ;
Dubin, Adrienne E. ;
Montal, Mauricio ;
Patapoutian, Ardem .
NATURE, 2012, 483 (7388) :176-U72