COVID-19: Coronavirus Vaccine Development Updates

被引:128
作者
Zhao, Jing [1 ]
Zhao, Shan [1 ]
Ou, Junxian [1 ]
Zhang, Jing [2 ]
Lan, Wendong [1 ]
Guan, Wenyi [1 ]
Wu, Xiaowei [1 ]
Yan, Yuqian [1 ]
Zhao, Wei [1 ]
Wu, Jianguo [2 ]
Chodosh, James [3 ]
Zhang, Qiwei [1 ,2 ]
机构
[1] Southern Med Univ, Sch Publ Hlth, Guangdong Prov Key Lab Trop Dis Res, Guangzhou, Peoples R China
[2] Jinan Univ, Inst Med Microbiol, Guangdong Prov Key Lab Virol, Guangzhou, Peoples R China
[3] Harvard Med Sch, Massachusetts Eye & Ear, Howe Lab, Dept Ophthalmol, Boston, MA 02115 USA
关键词
Severe Acute Respiratory Syndrome; vaccine; Coronavirus Disease 2019 (COVID-19); Severe Acute Respiratory Syndrome Coronavirus 2; Middle-East Respiratory Syndrome; RESPIRATORY-SYNDROME CORONAVIRUS; RECEPTOR-BINDING DOMAIN; SARS CORONAVIRUS; NEUTRALIZING ANTIBODIES; IMMUNE-RESPONSES; SPIKE PROTEIN; DNA VACCINE; PROTECTIVE EFFICACY; DENDRITIC CELLS; INFLUENZA-VIRUS;
D O I
10.3389/fimmu.2020.602256
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.
引用
收藏
页数:19
相关论文
共 145 条
[51]   Design and production of recombinant subunit vaccines [J].
Hansson, M ;
Nygren, PÅ ;
Ståhl, S .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2000, 32 (02) :95-107
[52]   Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology [J].
Honda-Okubo, Yoshikazu ;
Barnard, Dale ;
Ong, Chun Hao ;
Peng, Bi-Hung ;
Tseng, Chien-Te Kent ;
Petrovsky, Nikolai .
JOURNAL OF VIROLOGY, 2015, 89 (06) :2995-3007
[53]   Immunization with SARS-CoV S DNA vaccine generates memory CD4+ and CD8+ T cell immune responses [J].
Huang, Jun ;
Ma, Rui ;
Wu, Chang-you .
VACCINE, 2006, 24 (23) :4905-4913
[54]   Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production [J].
Huang, Y ;
Yang, ZY ;
Kong, WP ;
Nabel, GJ .
JOURNAL OF VIROLOGY, 2004, 78 (22) :12557-12565
[55]   Effects of Toll-Like Receptor Stimulation on Eosinophilic Infiltration in Lungs of BALB/c Mice Immunized with UV-Inactivated Severe Acute Respiratory Syndrome-Related Coronavirus Vaccine [J].
Iwata-Yoshikawa, Naoko ;
Uda, Akihiko ;
Suzuki, Tadaki ;
Tsunetsugu-Yokota, Yasuko ;
Sato, Yuko ;
Morikawa, Shigeru ;
Tashiro, Masato ;
Sata, Tetsutaro ;
Hasegawa, Hideki ;
Nagata, Noriyo .
JOURNAL OF VIROLOGY, 2014, 88 (15) :8597-8614
[56]   An mRNA Vaccine against SARS-CoV-2-Preliminary Report [J].
Jackson, L. A. ;
Anderson, E. J. ;
Rouphael, N. G. ;
Roberts, P. C. ;
Makhene, M. ;
Coler, R. N. ;
McCullough, M. P. ;
Chappell, J. D. ;
Denison, M. R. ;
Stevens, L. J. ;
Pruijssers, A. J. ;
McDermott, A. ;
Flach, B. ;
Doria-Rose, N. A. ;
Corbett, K. S. ;
Morabito, K. M. ;
O'Dell, S. ;
Schmidt, S. D. ;
Swanson, P. A. ;
Padilla, M. ;
Mascola, J. R. ;
Neuzil, K. M. ;
Bennett, H. ;
Sun, W. ;
Peters, E. ;
Makowski, M. ;
Albert, J. ;
Cross, K. ;
Buchanan, W. ;
Pikaart-Tautges, R. ;
Ledgerwood, J. E. ;
Graham, B. S. ;
Beigel, J. H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (20) :1920-1931
[57]  
Jaume M, 2012, Hong Kong Med J, V18 Suppl 2, P31
[58]   Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection [J].
Jia, Wenxu ;
Channappanavar, Rudragouda ;
Zhang, Chao ;
Li, Mingxi ;
Zhou, Haixia ;
Zhang, Shuyuan ;
Zhou, Panpan ;
Xu, Jiuyang ;
Shan, Sisi ;
Shi, Xuanling ;
Wang, Xinquan ;
Zhaog, Jincun ;
Zhou, Dongming ;
Perlman, Stanley ;
Zhang, Linqi .
EMERGING MICROBES & INFECTIONS, 2019, 8 (01) :760-772
[59]   Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine [J].
Jimenez-Guardeno, Jose M. ;
Regla-Nava, Jose A. ;
Nieto-Torres, Jose L. ;
DeDiego, Marta L. ;
Castano-Rodriguez, Carlos ;
Fernandez-Delgado, Raul ;
Perlman, Stanley ;
Enjuanes, Luis .
PLOS PATHOGENS, 2015, 11 (10)
[60]   Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus [J].
Jung, Seo-Yeon ;
Kang, Kyung Won ;
Lee, Eun-Young ;
Seo, Dong-Won ;
Kim, Hong-Lim ;
Kim, Hak ;
Kwon, TaeWoo ;
Park, Hye-Lim ;
Kim, Hun ;
Lee, Sang-Myeong ;
Nam, Jae-Hwan .
VACCINE, 2018, 36 (24) :3468-3476