Mathematical modeling of heterodyne-type laser Doppler velocimeter operating via long optical fiber guide

被引:0
作者
Khotiaintsev, S. [1 ]
Vazquez-Zuniga, L. A. [1 ]
Alvarado-Cruz, M. A. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Engn, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Ecatepec Inst Technol, Mexico City 04510, DF, Mexico
来源
LFNM 2006: 8TH INTERNATIONAL CONFERENCE ON LASER AND FIBER-OPTICAL NETWORKS MODELING, PROCEEDINGS | 2006年
关键词
optical fibers; optical fiber sensors; laser Doppler velocimetry; optical scattering;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a mathematical model of the signal and noise components in the heterodyne-type laser Doppler velocimeter (LDV) which operates via long optical fiber guide. Our model accounts for laser power output, the length of the optical fiber guide, its absorption, the Rayleigh and Brillouin scattering in the optical fiber guide, and the photo detector parameters. The scattering properties of the moving particles in the liquid or gas flow which is accessed by the LDV are accounted for by an integral scattering coefficient. We show that the Rayleigh and Brillouin scattering in the optical fiber are the principal noise sources that corrupt the signal-to-noise ratio of the present LDV. The numerical examples show that the SNR can be as low as 0 dB in the case of the typical optical fibers. of a length of several kilometers.
引用
收藏
页码:32 / +
页数:2
相关论文
共 6 条
[1]  
AGRAWAL GP, 1997, FIBER OPTIC COMMUNIC, P546
[2]  
Durst F., 1976, PRINCIPLES PRACTICE, P405
[3]  
KHOTIANINTSEV S, 2005, ELECTR COMMUN 1, V26, P82
[4]   SENSITIVITY ANALYSIS OF THE SAGNAC-EFFECT OPTICAL-FIBER RING INTERFEROMETER [J].
LIN, SC ;
GIALLORENZI, TG .
APPLIED OPTICS, 1979, 18 (06) :915-931
[5]   SHEET FLOW AND SUSPENSION OF SAND IN OSCILLATORY BOUNDARY-LAYERS [J].
RIBBERINK, JS ;
ALSALEM, AA .
COASTAL ENGINEERING, 1995, 25 (3-4) :205-225
[6]   EVALUATION OF FIBER OPTICAL-WAVEGUIDES USING BRILLOUIN SPECTROSCOPY [J].
RICH, TC ;
PINNOW, DA .
APPLIED OPTICS, 1974, 13 (06) :1376-1378