Matrix Rings over Reflexive Rings

被引:0
作者
Cheon, Jeoung Soo [1 ]
Kwak, Tai Keun [2 ]
Lee, Yang [3 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
[2] Daejin Univ, Dept Math, Pochon 11159, South Korea
[3] Daejin Univ, Inst Basic Sci, Pochon 11159, South Korea
基金
新加坡国家研究基金会;
关键词
weakly reflexive ring; reflexive ring; power of ideal; matrix ring; ring of minimal order; REVERSIBLE RINGS; PROPERTY; IDEMPOTENTS; IDEALS;
D O I
10.1142/S1005386718000317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of reflexive property is introduced by Mason. This note concerns a ring-theoretic property of matrix rings over reflexive rings. We introduce the concept of weakly reflexive rings as a generalization of reflexive rings. From any ring, we can construct weakly reflexive rings but not reflexive, using its lower nilradical. We study various useful properties of such rings in relation with ideals in matrix rings, showing that this new property is Morita invariant. We also investigate the weakly reflexive property of several sorts of ring extensions which have roles in ring theory.
引用
收藏
页码:459 / 474
页数:16
相关论文
共 50 条
  • [41] Integer-valued Polynomials Over Matrix Rings of Number Fields
    Javad Sedighi Hafshejani
    Ali Reza Naghipour
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 2005 - 2013
  • [42] Idempotents in triangular matrix rings
    Hou, Xin
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02) : 296 - 304
  • [43] Identities with inverses on matrix rings
    Argac, N.
    Eroglu, M. P.
    Lee, T. -K.
    Lin, J. -H.
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (03) : 635 - 651
  • [44] ON A SPECIAL CLASS OF MATRIX RINGS
    Bhattacharjee, Arnab
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (02): : 267 - 278
  • [45] A class of formal matrix rings
    Tang, Gaohua
    Zhou, Yiqiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (12) : 4672 - 4688
  • [46] Products of commutators in matrix rings
    Bresar, Matej
    Gardella, Eusebio
    Thiel, Hannes
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [47] Ideals of Some Matrix Rings
    G. S. Suleimanova
    Acta Applicandae Mathematica, 2005, 85 : 291 - 296
  • [48] On Skew Armendariz Matrix Rings
    Gang YANG1
    2.Department of Mathematics
    Journal of Mathematical Research with Applications, 2010, (06) : 1055 - 1060
  • [49] Strong primeness in matrix rings
    Thackeray, Henry R.
    van den Berg, John E.
    JOURNAL OF ALGEBRA, 2014, 420 : 509 - 527
  • [50] Ideals of some matrix rings
    Suleimanova, GS
    ACTA APPLICANDAE MATHEMATICAE, 2005, 85 (1-3) : 291 - 296