Matrix Rings over Reflexive Rings

被引:0
|
作者
Cheon, Jeoung Soo [1 ]
Kwak, Tai Keun [2 ]
Lee, Yang [3 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
[2] Daejin Univ, Dept Math, Pochon 11159, South Korea
[3] Daejin Univ, Inst Basic Sci, Pochon 11159, South Korea
基金
新加坡国家研究基金会;
关键词
weakly reflexive ring; reflexive ring; power of ideal; matrix ring; ring of minimal order; REVERSIBLE RINGS; PROPERTY; IDEMPOTENTS; IDEALS;
D O I
10.1142/S1005386718000317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of reflexive property is introduced by Mason. This note concerns a ring-theoretic property of matrix rings over reflexive rings. We introduce the concept of weakly reflexive rings as a generalization of reflexive rings. From any ring, we can construct weakly reflexive rings but not reflexive, using its lower nilradical. We study various useful properties of such rings in relation with ideals in matrix rings, showing that this new property is Morita invariant. We also investigate the weakly reflexive property of several sorts of ring extensions which have roles in ring theory.
引用
收藏
页码:459 / 474
页数:16
相关论文
共 50 条
  • [21] Injective modules over formal matrix rings
    Krylov, P. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (01) : 72 - 77
  • [22] Idempotents of 2 x 2 matrix rings over rings of formal power series
    Drensky, Vesselin
    LINEAR & MULTILINEAR ALGEBRA, 2021,
  • [23] Some results on the integer-valued polynomials over matrix rings
    Naghipour, A. R.
    Rismanchian, M. R.
    Hafshejani, J. Sedighi
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1675 - 1686
  • [24] Idempotents of 2x2 matrix rings over rings of formal power series
    Drensky, Vesselin
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20) : 5207 - 5213
  • [25] STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS
    Huang, Juan
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1321 - 1334
  • [26] Lattice-ordered matrix rings over the integers
    Ma, Jingjing
    Redfield, R. H.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (07) : 2160 - 2170
  • [27] Reversible group rings over commutative rings
    Li, Yuanlin
    Parmenter, M. M.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (12) : 4096 - 4104
  • [28] Reflexive ideals and reflexively closed subsets in rings
    Kim, Sera
    Kwak, Tai Keun
    Lee, Chang Ik
    Lee, Yang
    Yun, Sang Jo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
  • [29] On Σ-skew reflexive-nilpotents-property for rings
    Suarez, Hector
    Higuera, Sebastian
    Reyes, Armando
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (01): : 134 - 159
  • [30] A CHARACTERISATION OF MATRIX RINGS
    Goyal, Dimple Rani
    Khurana, Dinesh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (01) : 95 - 101