Disentangling molecular relationships with a causal inference test

被引:168
作者
Millstein, Joshua [1 ]
Zhang, Bin [1 ]
Zhu, Jun [1 ]
Schadt, Eric E. [1 ]
机构
[1] Rosetta Inpharmat LLC, Dept Genet, Seattle, WA 98109 USA
来源
BMC GENETICS | 2009年 / 10卷
关键词
INTEGRATIVE GENOMICS APPROACH; MENDELIAN RANDOMIZATION; GENE-EXPRESSION; DISEASE; NETWORKS; EPIDEMIOLOGY; COMPLEXITY; TRAITS; YEAST;
D O I
10.1186/1471-2156-10-23
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: There has been intense effort over the past couple of decades to identify loci underlying quantitative traits as a key step in the process of elucidating the etiology of complex diseases. Recently there has been some effort to coalesce non-biased high-throughput data, e. g. high density genotyping and genome wide RNA expression, to drive understanding of the molecular basis of disease. However, a stumbling block has been the difficult question of how to leverage this information to identify molecular mechanisms that explain quantitative trait loci (QTL). We have developed a formal statistical hypothesis test, resulting in a p-value, to quantify uncertainty in a causal inference pertaining to a measured factor, e. g. a molecular species, which potentially mediates a known causal association between a locus and a quantitative trait. Results: We treat the causal inference as a 'chain' of mathematical conditions that must be satisfied to conclude that the potential mediator is causal for the trait, where the inference is only as good as the weakest link in the chain. P-values are computed for the component conditions, which include tests of linkage and conditional independence. The Intersection-Union Test, in which a series of statistical tests are combined to form an omnibus test, is then employed to generate the overall test result. Using computer simulated mouse crosses, we show that type I error is low under a variety of conditions that include hidden variables and reactive pathways. We show that power under a simple causal model is comparable to other model selection techniques as well as Bayesian network reconstruction methods. We further show empirically that this method compares favorably to Bayesian network reconstruction methods for reconstructing transcriptional regulatory networks in yeast, recovering 7 out of 8 experimentally validated regulators. Conclusion: Here we propose a novel statistical framework in which existing notions of causal mediation are formalized into a hypothesis test, thus providing a standard quantitative measure of uncertainty in the form of a p-value. The method is theoretically and computationally accessible and with the provided software may prove a useful tool in disentangling molecular relationships.
引用
收藏
页数:15
相关论文
共 23 条
[1]  
BOTTCHER SG, 2003, J STAT SOFTW, V8, P1
[2]   The landscape of genetic complexity across 5,700 gene expression traits in yeast [J].
Brem, RB ;
Kruglyak, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) :1572-1577
[3]   R/qtl: QTL mapping in experimental crosses [J].
Broman, KW ;
Wu, H ;
Sen, S ;
Churchill, GA .
BIOINFORMATICS, 2003, 19 (07) :889-890
[4]  
Cassella G., 2002, STAT INFERENCE, V2nd
[5]   Harnessing naturally randomized transcription to infer regulatory relationships among genes [J].
Chen, Lin S. ;
Emmert-Streib, Frank ;
Storey, John D. .
GENOME BIOLOGY, 2007, 8 (10)
[6]   Variations in DNA elucidate molecular networks that cause disease [J].
Chen, Yanqing ;
Zhu, Jun ;
Lum, Pek Yee ;
Yang, Xia ;
Pinto, Shirly ;
MacNeil, Douglas J. ;
Zhang, Chunsheng ;
Lamb, John ;
Edwards, Stephen ;
Sieberts, Solveig K. ;
Leonardson, Amy ;
Castellini, Lawrence W. ;
Wang, Susanna ;
Champy, Marie-France ;
Zhang, Bin ;
Emilsson, Valur ;
Doss, Sudheer ;
Ghazalpour, Anatole ;
Horvath, Steve ;
Drake, Thomas A. ;
Lusis, Aldons J. ;
Schadt, Eric E. .
NATURE, 2008, 452 (7186) :429-435
[7]   Mendelian randomization as an instrumental variable approach to causal inference [J].
Didelez, Vanessa ;
Sheehan, Nuala .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) :309-330
[8]   Genetics of gene expression and its effect on disease [J].
Emilsson, Valur ;
Thorleifsson, Gudmar ;
Zhang, Bin ;
Leonardson, Amy S. ;
Zink, Florian ;
Zhu, Jun ;
Carlson, Sonia ;
Helgason, Agnar ;
Walters, G. Bragi ;
Gunnarsdottir, Steinunn ;
Mouy, Magali ;
Steinthorsdottir, Valgerdur ;
Eiriksdottir, Gudrun H. ;
Bjornsdottir, Gyda ;
Reynisdottir, Inga ;
Gudbjartsson, Daniel ;
Helgadottir, Anna ;
Jonasdottir, Aslaug ;
Jonasdottir, Adalbjorg ;
Styrkarsdottir, Unnur ;
Gretarsdottir, Solveig ;
Magnusson, Kristinn P. ;
Stefansson, Hreinn ;
Fossdal, Ragnheidur ;
Kristjansson, Kristleifur ;
Gislason, Hjortur G. ;
Stefansson, Tryggvi ;
Leifsson, Bjorn G. ;
Thorsteinsdottir, Unnur ;
Lamb, John R. ;
Gulcher, Jeffrey R. ;
Reitman, Marc L. ;
Kong, Augustine ;
Schadt, Eric E. ;
Stefansson, Kari .
NATURE, 2008, 452 (7186) :423-U2
[9]   Accurate Discovery of Expression Quantitative Trait Loci Under Confounding From Spurious and Genuine Regulatory Hotspots [J].
Kang, Hyun Min ;
Ye, Chun ;
Eskin, Eleazar .
GENETICS, 2008, 180 (04) :1909-1925
[10]   Causal inference of regulator-target pairs by gene mapping of expression phenotypes [J].
Kulp, David C. ;
Jagalur, Manjunatha .
BMC GENOMICS, 2006, 7 (1)