Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector

被引:17
|
作者
Michimura, Yuta [1 ]
Komori, Kentaro [1 ]
Nishizawa, Atsushi [2 ]
Takeda, Hiroki [1 ]
Nagano, Koji [3 ]
Enomoto, Yutaro [1 ]
Hayama, Kazuhiro [4 ]
Somiya, Kentaro [5 ]
Ando, Masaki [1 ,6 ,7 ]
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan
[3] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[4] Fukuoka Univ, Dept Appl Phys, Fukuoka, Fukuoka 8140180, Japan
[5] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528550, Japan
[6] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan
[7] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan
基金
新加坡国家研究基金会;
关键词
THERMAL NOISE; RADIATION;
D O I
10.1103/PhysRevD.97.122003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Limitation of Gravitational Wave Detector Niobe Sensitivity by the Frequency Tracking Noise
    Frajuca, Carlos
    Bortoli, Fabio da Silva
    PROCEEDINGS OF THE 7TH INTERNATIONAL WORKSHOP ON ASTRONOMY AND RELATIVISTIC ASTROPHYSICS (IWARA 2016), 2017, 45
  • [42] THE CRYOGENIC DETECTOR OF GRAVITATIONAL-WAVES IN FRASCATI
    GIOVANARDI, U
    IAFOLLA, V
    NAPOLEONI, P
    PAVAN, B
    UGAZIO, S
    RICCI, F
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1981, 14 (09): : 1067 - 1072
  • [43] Visualizing particle swarm optimization - Gaussian particle swarm optimization
    Secrest, BR
    Lamont, GB
    PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 198 - 204
  • [44] Particle-swarm-optimization-based multiuser detector for CDMA communications
    Soo, K. K.
    Siu, Y. M.
    Chan, W. S.
    Yang, L.
    Chen, R. S.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007, 56 (05) : 3006 - 3013
  • [45] GPU implementation of a road sign detector based on particle swarm optimization
    Mussi, Luca
    Cagnoni, Stefano
    Cardarelli, Elena
    Daolio, Fabio
    Medici, Paolo
    Porta, Pier Paolo
    EVOLUTIONARY INTELLIGENCE, 2010, 3 (3-4) : 155 - 169
  • [46] Sensitivity and Particle Swarm Optimization-based Congestion Management
    Pandya, K. S.
    Joshi, S. K.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2013, 41 (04) : 465 - 484
  • [47] Sensitivity property analysis of biosensors based on particle swarm optimization
    Chen, Ying
    Wang, Wenyue
    Bi, Weihong
    Zhongguo Jiguang/Chinese Journal of Lasers, 2014, 41 (06):
  • [48] Optimization of Balanced Detector for Coherent Receiver on Generic InP Platform by Particle Swarm Optimization
    Nag, Dhiman
    Yao, Weiming
    van der Tol, Jos J. G. M.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2024, 60 (03)
  • [49] Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case
    Granata, Veronica
    Pierro, Vincenzo
    Troiano, Luigi
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [50] An Improved Hybrid Method Combining Gravitational Search Algorithm With Dynamic Multi Swarm Particle Swarm Optimization
    Nagra, Arfan Ali
    Han, Fei
    Ling, Qing-Hua
    Mehta, Sumet
    IEEE ACCESS, 2019, 7 : 50388 - 50399