Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce

被引:19
|
作者
Vaisanen, Enni [1 ,2 ]
Takahashi, Junko [1 ,3 ]
Obudulu, Ogonna [3 ,7 ]
Bygdell, Joakim [4 ]
Karhunen, Pirkko [5 ]
Blokhina, Olga [1 ]
Laitinen, Teresa [2 ]
Teeri, Teemu H. [2 ]
Wingsle, Gunnar [3 ]
Fagerstedt, Kurt, V [1 ]
Karkonen, Anna [2 ,6 ]
机构
[1] Univ Helsinki, Fac Biol & Environm Sci, Viikki Plant Sci Ctr, Organismal & Evolutionary Biol Res Programme, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Viikki Plant Sci Ctr, Dept Agr Sci, Helsinki 00014, Finland
[3] Swedish Univ Agr Sci, Umea Plant Sci Ctr UPSC, Dept Forest Genet & Plant Physiol, S-90183 Umea, Sweden
[4] Umea Univ, Dept Chem, Computat Life Sci Cluster CLiC, Umea 90187, Sweden
[5] Univ Helsinki, Dept Chem, Helsinki 00014, Finland
[6] Nat Resources Inst Finland Luke, Prod Syst, Plant Genet, Helsinki 00790, Finland
[7] Univ Gothenburg, Inst Biomed, Dept Microbiol & Immunol, S-40530 Gothenburg, Sweden
基金
芬兰科学院;
关键词
Lignin biosynthesis; monolignol transport; plasma membrane; proteomics; transporter proteins; P-COUMAROYL TRANSFERASE; DIFFERENTIATING XYLEM; CONIFERYL-ALCOHOL; LIGNIN PRECURSORS; ABC TRANSPORTERS; EXPRESSION ANALYSIS; PLASMA-MEMBRANES; CAMBIAL SAP; LIGNIFICATION; PROTEIN;
D O I
10.1093/jxb/eraa368
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissuecultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the K-m value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.
引用
收藏
页码:6379 / 6395
页数:17
相关论文
共 43 条
  • [1] Active Transport of Lignin Precursors into Membrane Vesicles from Lignifying Tissues of Bamboo
    Shimada, Natsumi
    Munekata, Noriaki
    Tsuyama, Taku
    Matsushita, Yasuyuki
    Fukushima, Kazuhiko
    Kijidani, Yoshio
    Takabe, Keiji
    Yazaki, Kazufumi
    Kamei, Ichiro
    PLANTS-BASEL, 2021, 10 (11):
  • [2] Membrane Transporters and Carriers in Human Seminal Vesicles
    Malinowski, Damian
    Grzegolkowski, Pawel
    Piotrowska, Katarzyna
    Slojewski, Marcin
    Drozdzik, Marek
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (08)
  • [3] Proteomics of human liver membrane transporters: a focus on fetuses and newborn infants
    van Groen, Bianca D.
    van de Steeg, Evita
    Mooij, Miriam G.
    van Lipzig, Marola M. H.
    de Koning, Barbara A. E.
    Verdijk, Robert M.
    Wortelboer, Heleen M.
    Gaedigk, Roger
    Bi, Chengpeng
    Leeder, J. Steven
    van Schaik, Ron H. N.
    van Rosmalen, Joost
    Tibboel, Dick
    Vaes, Wouter H.
    de Wildt, Saskia N.
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 124 : 217 - 227
  • [4] The intracellular transport of transporters: membrane trafficking of mineral transporters
    Fuji, Kentaro
    Miwa, Kyoko
    Fujiwara, Toru
    CURRENT OPINION IN PLANT BIOLOGY, 2009, 12 (06) : 699 - 704
  • [5] Salmonella Choleraesuis outer membrane vesicles: Proteomics and immunogenicity
    Liu, Qiong
    Yi, Jie
    Liang, Kang
    Zhang, Xiangmin
    Liu, Qing
    JOURNAL OF BASIC MICROBIOLOGY, 2017, 57 (10) : 852 - 861
  • [6] Role of Glucose Transporters in Drug Membrane Transport
    Wang, Xin
    Guo, Kunkun
    Huang, Baolin
    Lin, Zimin
    Cai, Zheng
    CURRENT DRUG METABOLISM, 2020, 21 (12) : 947 - 958
  • [7] PROTEOMICS IN GRAM-NEGATIVE BACTERIAL OUTER MEMBRANE VESICLES
    Lee, Eun-Young
    Choi, Dong-Sic
    Kim, Kwang-Pyo
    Gho, Yong Song
    MASS SPECTROMETRY REVIEWS, 2008, 27 (06) : 535 - 555
  • [8] Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport
    Naramoto, Satoshi
    CURRENT OPINION IN PLANT BIOLOGY, 2017, 40 : 8 - 14
  • [9] Biochemical characterization of plasma membrane vesicles of Cyanophora paradoxa
    Heimann, K
    Becker, B
    Harnisch, H
    Mukherjee, KD
    Melkonian, M
    BOTANICA ACTA, 1997, 110 (05): : 401 - 410
  • [10] Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles
    Lee, Eun-Young
    Choi, Do-Young
    Kim, Dae-Kyum
    Kim, Jung-Wook
    Park, Jung Ok
    Kim, Sungjee
    Kim, Sang-Hyun
    Desiderio, Dominic M.
    Kim, Yoon-Keun
    Kim, Kwang-Pyo
    Gho, Yong Song
    PROTEOMICS, 2009, 9 (24) : 5425 - 5436