Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression

被引:80
作者
Fu, Yuanyuan [1 ,2 ,3 ]
Yang, Guijun [1 ,2 ,3 ]
Li, Zhenhai [1 ,2 ]
Song, Xiaoyu [1 ,2 ]
Li, Zhenhong [1 ,4 ]
Xu, Xingang [1 ,2 ]
Wang, Pei [1 ,5 ]
Zhao, Chunjiang [1 ,2 ,3 ]
机构
[1] Minist Agr, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
[2] Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
[3] Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China
[4] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[5] Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
基金
中国博士后科学基金; 英国科学技术设施理事会; 北京市自然科学基金;
关键词
unmanned aerial vehicle; winter wheat; nitrogen status indicators; color space models; Gabor-based textures; Gaussian processes regression; CHLOROPHYLL CONTENT; VEGETATION INDEXES; VARIABLE SELECTION; REMOTE ESTIMATION; AUTOMATED CROP; BIOMASS; LEAF; RICE; REFLECTANCE; TEXTURE;
D O I
10.3390/rs12223778
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Predicting the crop nitrogen (N) nutrition status is critical for optimizing nitrogen fertilizer application. The present study examined the ability of multiple image features derived from unmanned aerial vehicle (UAV) RGB images for winter wheat N status estimation across multiple critical growth stages. The image features consisted of RGB-based vegetation indices (VIs), color parameters, and textures, which represented image features of different aspects and different types. To determine which N status indicators could be well-estimated, we considered two mass-based N status indicators (i.e., the leaf N concentration (LNC) and plant N concentration (PNC)) and two area-based N status indicators (i.e., the leaf N density (LND) and plant N density (PND)). Sixteen RGB-based VIs associated with crop growth were selected. Five color space models, including RGB, HSV, L*a*b*, L*c*h*, and L*u*v*, were used to quantify the winter wheat canopy color. The combination of Gaussian processes regression (GPR) and Gabor-based textures with four orientations and five scales was proposed to estimate the winter wheat N status. The gray level co-occurrence matrix (GLCM)-based textures with four orientations were extracted for comparison. The heterogeneity in the textures of different orientations was evaluated using the measures of mean and coefficient of variation (CV). The variable importance in projection (VIP) derived from partial least square regression (PLSR) and a band analysis tool based on Gaussian processes regression (GPR-BAT) were used to identify the best performing image features for the N status estimation. The results indicated that (1) the combination of RGB-based VIs or color parameters only could produce reliable estimates of PND and the GPR model based on the combination of color parameters yielded a higher accuracy for the estimation of PND (R-val(2) = 0.571, RMSEval = 2.846 g/m(2), and RPDval = 1.532), compared to that based on the combination of RGB-based VIs; (2) there was no significant heterogeneity in the textures of different orientations and the textures of 45 degrees were recommended in the winter wheat N status estimation; (3) compared with the RGB-based VIs and color parameters, the GPR model based on the Gabor-based textures produced a higher accuracy for the estimation of PND (R-val(2) = 0.675, RMSEval = 2.493 g/m(2), and RPDval = 1.748) and the PLSR model based on the GLCM-based textures produced a higher accuracy for the estimation of PNC (R-val(2) = 0.612, RMSEval = 0.380%, and RPDval = 1.601); and (4) the combined use of RGB-based VIs, color parameters, and textures produced comparable estimation results to using textures alone. Both VIP-PLSR and GPR-BAT analyses confirmed that image textures contributed most to the estimation of winter wheat N status. The experimental results reveal the potential of image textures derived from high-definition UAV-based RGB images for the estimation of the winter wheat N status. They also suggest that a conventional low-cost digital camera mounted on a UAV could be well-suited for winter wheat N status monitoring in a fast and non-destructive way.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 66 条
[1]   Leaf nitrogen determination using non-destructive techniques-A review [J].
Ali, M. M. ;
Al-Ani, Ahmed ;
Eamus, Derek ;
Tan, Daniel K. Y. .
JOURNAL OF PLANT NUTRITION, 2017, 40 (07) :928-953
[2]   Quantification of plant stress using remote sensing observations and crop models:: the case of nitrogen management [J].
Baret, F. ;
Houles, V. ;
Guerif, M. .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (04) :869-880
[3]   Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J].
Bendig, Juliane ;
Yu, Kang ;
Aasen, Helge ;
Bolten, Andreas ;
Bennertz, Simon ;
Broscheit, Janis ;
Gnyp, Martin L. ;
Bareth, Georg .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 39 :79-87
[4]  
Brown M, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P1218
[5]   A Survey on Gaussian Processes for Earth-Observation Data Analysis A comprehensive investigation [J].
Camps-Valls, Gustau ;
Verrelst, Jochem ;
Munoz-Mari, Jordi ;
Laparra, Valero ;
Mateo-Jimenez, Fernando ;
Gomez-Dan, Jose .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2016, 4 (02) :58-78
[6]   Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties [J].
Chang, CW ;
Laird, DA ;
Mausbach, MJ ;
Hurburgh, CR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2001, 65 (02) :480-490
[7]   Color image segmentation: advances and prospects [J].
Cheng, HD ;
Jiang, XH ;
Sun, Y ;
Wang, JL .
PATTERN RECOGNITION, 2001, 34 (12) :2259-2281
[8]   Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression [J].
Cho, Moses Azong ;
Skidmore, Andrew ;
Corsi, Fabio ;
van Wieren, Sipke E. ;
Sobhan, Istiak .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2007, 9 (04) :414-424
[9]   Performance of some variable selection methods when multicollinearity is present [J].
Chong, IG ;
Jun, CH .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 78 (1-2) :103-112
[10]   Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content [J].
Clevers, Jan G. P. W. ;
Kooistra, Lammert .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :574-583