Nitrogen dilution effect on the flammability limits for hydrocarbons

被引:42
作者
Chen, Chan-Cheng [1 ]
Wang, Tzu-Chi [2 ]
Liaw, Horng-Jang [1 ]
Chen, Hui-Chu [3 ]
机构
[1] China Med Univ, Dept Occupat Safety & Hlth, Taichung 404, Taiwan
[2] Chinese Culture Univ, Dept Chem Engn, Taipei 111, Taiwan
[3] Chinese Culture Univ, Inst Mat Sci & Nanotechnol, Taipei 111, Taiwan
关键词
Upper flammability limit; Lower flammability limit; Inerting; Fire safety; MIXTURES; FORMULA;
D O I
10.1016/j.jhazmat.2008.11.093
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Theoretical models to predict the upper/lower flammability limits of hydrocarbons diluted with inert nitrogen gas are proposed in this study. It is found that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert nitrogen mixture. Such linearity is examined by experimental data reported in the literature, which include the cases of methane, propane, ethylene and propylene. The R-squared values (RI) of the regression lines of the cases explored are all greater than 0.989 for upper flammability limit (UFL). The theoretical slope of the predictive line for lower flammability limit (LFL) is found to be very close to zero for all explored cases; and this result successfully explains the experimental fact that adding inert nitrogen to a flammable material has very limited effect on LFL Because limit oxygen concentration (LOC) could be taken as the intersectional point of the UFL curve and LFL curve, a LOC-based method is proposed to predict the slope of the UFL curve when experimental data of UFL are not available. This LOC-based method predicts the UFL with average error ranging from 2.17% to 5.84% and maximum error ranging from 8.58% to 12.18% for the cases explored. The predictive models for inert gas of nitrogen are also extended to the case of inert gas other than nitrogen. Through the extended models, it was found that the inert ability of an inert gas depends on its mean molar heat capacity at the adiabatic flame temperature. Theoretical calculation shows that the inert abilities of carbon dioxide, steam, nitrogen and helium are in the following order: carbon dioxide > steam > nitrogen > helium; and this sequence conforms to the existing experimental data reported in the literature. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:880 / 890
页数:11
相关论文
共 17 条
[1]   Flammability of methane, propane, and hydrogen gases [J].
Cashdollar, KL ;
Zlochower, IA ;
Green, GM ;
Thomas, RA ;
Hertzberg, M .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2000, 13 (3-5) :327-340
[2]  
CHEN CC, 2008, J HAZARD MATER, DOI DOI 10.1016/JJHAZMAT.2008.07.051
[3]  
COWARD HF, 1952, B BUREAU MINES, V503
[4]  
Crowl D.A., 2002, CHEM PROCESS SAFETY, VSecond
[5]   Extended Le Chatelier's formula and nitrogen dilution effect on the flammability limits [J].
Kondo, S ;
Takizawa, K ;
Takahashi, A ;
Tokuhashi, K .
FIRE SAFETY JOURNAL, 2006, 41 (05) :406-417
[6]   A study on flammability limits of fuel mixtures [J].
Kondo, Shigeo ;
Takizawa, Kenji ;
Takahashi, Akifumi ;
Tokuhashi, Kazuaki ;
Sekiya, Akira .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 155 (03) :440-448
[7]   Flammability limits of isobutane and its mixtures with various gases [J].
Kondo, Shigeo ;
Takizawa, Kenji ;
Takahashi, Akifurni ;
Tokuhashi, Kazuaki ;
Sekiya, Akira .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 148 (03) :640-647
[8]   Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits [J].
Kondo, Shigeo ;
Takizawa, Kenji ;
Takahashi, Akifumi ;
Tokuhashi, Kazuaki .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 138 (01) :1-8
[9]   Flammability of gas mixtures containing volatile organic compounds and hydrogen [J].
Liekhus, KJ ;
Zlochower, IA ;
Cashdollar, KL ;
Djordjevic, SM ;
Loehr, CA .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2000, 13 (3-5) :377-384
[10]   Derivation of Le Chatelier's mixing rule for flammable limits [J].
Mashuga, CV ;
Crowl, DA .
PROCESS SAFETY PROGRESS, 2000, 19 (02) :112-117