Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method

被引:51
作者
Ahmad, Omer F. [1 ]
Mori, Yuichi [2 ,3 ]
Misawa, Masashi [2 ]
Kudo, Shin-ei [2 ]
Anderson, John T. [4 ]
Bernal, Jorge [5 ,6 ]
Berzin, Tyler M. [7 ]
Bisschops, Raf [8 ]
Byrne, Michael F. [9 ]
Chen, Peng-Jen [10 ]
East, James E. [11 ,12 ]
Eelbode, Tom [13 ]
Elson, Daniel S. [14 ,15 ]
Gurudu, Suryakanth R. [16 ]
Histace, Aymeric [17 ]
Karnes, William E. [18 ]
Repici, Alessandro [19 ,20 ]
Singh, Rajvinder [21 ]
Valdastri, Pietro [22 ]
Wallace, Michael B. [23 ]
Wang, Pu [24 ]
Stoyanov, Danail [1 ]
Lovat, Laurence B. [1 ,25 ]
机构
[1] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
[2] Showa Univ, Digest Dis Ctr, Northern Yokohama Hosp, Yokohama, Kanagawa, Japan
[3] Univ Oslo, Inst Hlth & Soc, Clin Effectiveness Res Grp, Oslo, Norway
[4] Gloucestershire Hosp NHS Fdn Trust, Dept Gastroenterol, Gloucester, England
[5] Univ Autonoma Barcelona, Comp Sci Dept, Barcelona, Spain
[6] Comp Vis Ctr, Barcelona, Spain
[7] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Adv Endoscopy, Boston, MA USA
[8] Univ Hosp Leuven, Dept Gastroenterol & Hepatol, TARGID KU Leuven, Leuven, Belgium
[9] Univ British Columbia, Vancouver Gen Hosp, Div Gastroenterol, Vancouver, BC, Canada
[10] Triserv Gen Hosp, Natl Def Med Ctr, Div Gastroenterol, Taipei, Taiwan
[11] John Radcliffe Hosp, Translat Gastroenterol Unit, Oxford, England
[12] Univ Oxford, Oxford NIHR Biomed Res Ctr, Oxford, England
[13] Katholieke Univ Leuven, Med Imaging Res Ctr, ESAT PSI, Leuven, Belgium
[14] Imperial Coll London, Hamlyn Ctr Robot Surg, Inst Global Hlth Innovat, London, England
[15] Imperial Coll London, Dept Surg & Canc, London, England
[16] Mayo Clin, Div Gastroenterol & Hepatol, Scottsdale, AZ USA
[17] Univ Cergy Pointoise, Cergy Pointoise Cedex, CNRS, ENSEA,ETIS, Cergy Pontoise, France
[18] Univ Calif Irvine, HH Chao Comprehens Digest Dis Ctr, Dept Med, Div Gastroenterol & Hepatol, Irvine, CA USA
[19] IRCCS, Dept Gastroenterol, Humanitas Clin & Res Ctr, Milan, Italy
[20] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[21] Lyell McEwan Hosp, Dept Gastroenterol & Hepatol, Adelaide, SA, Australia
[22] Univ Leeds, Sch Elect & Elect Engn, Leeds, W Yorkshire, England
[23] Mayo Clin, Div Gastroenterol & Hepatol, Jacksonville, FL USA
[24] Sichuan Acad Med Sci & Sichuan Prov Peoples Hosp, Dept Gastroenterol, Chengdu, Peoples R China
[25] Univ Coll London Hosp, Gastrointestinal Serv, London, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
COMPUTER-AIDED DETECTION; GASTROINTESTINAL ENDOSCOPY; COLORECTAL NEOPLASIA; EUROPEAN-SOCIETY; RESEARCH AGENDA; POLYP DETECTION; OPTICAL BIOPSY; DIAGNOSIS; TRIAL;
D O I
10.1055/a-1306-7590
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. Methods An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. Results The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. Conclusions This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.
引用
收藏
页码:893 / 901
页数:9
相关论文
共 33 条
[1]   Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues [J].
Ahmad, Omer F. ;
Stoyanov, Danail ;
Lovat, Laurence B. .
TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY, 2020, 22 (02) :80-84
[2]  
Ahmad OF, 2019, LANCET GASTROENTEROL, V4, P71, DOI 10.1016/S2468-1253(18)30282-6
[3]   Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis [J].
Barua, Ishita ;
Vinsard, Daniela Guerrero ;
Jodal, Henriette C. ;
Loberg, Magnus ;
Kalager, Mette ;
Holme, Oyvind ;
Misawa, Masashi ;
Bretthauer, Michael ;
Mori, Yuichi .
ENDOSCOPY, 2021, 53 (03) :277-284
[4]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[5]   HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J].
Borgli, Hanna ;
Thambawita, Vajira ;
Smedsrud, Pia H. ;
Hicks, Steven ;
Jha, Debesh ;
Eskeland, Sigrun L. ;
Randel, Kristin Ranheim ;
Pogorelov, Konstantin ;
Lux, Mathias ;
Nguyen, Duc Tien Dang ;
Johansen, Dag ;
Griwodz, Carsten ;
Stensland, Hakon K. ;
Garcia-Ceja, Enrique ;
Schmidt, Peter T. ;
Hammer, Hugo L. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas .
SCIENTIFIC DATA, 2020, 7 (01)
[6]   Developing a Research Agenda for The American Society of Colon and Rectal Surgeons: Results of a Delphi Approach [J].
Burt, Caroline G. ;
Cima, Robert R. ;
Koltun, Walter A. ;
Littlejohn, Charles E. ;
Ricciardi, Rocco ;
Temple, Larissa K. ;
Rothenberger, David A. ;
Baxter, Nancy N. .
DISEASES OF THE COLON & RECTUM, 2009, 52 (05) :898-905
[7]   Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J].
Byrne, Michael F. ;
Chapados, Nicolas ;
Soudan, Florian ;
Oertel, Clemens ;
Linares Perez, Milagros ;
Kelly, Raymond ;
Iqbal, Nadeem ;
Chandelier, Florent ;
Rex, Douglas K. .
GUT, 2019, 68 (01) :94-100
[8]   Making optical biopsy a clinical reality in colonoscopy [J].
East, James E. ;
Rees, Colin J. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2018, 3 (01) :10-12
[9]   A research agenda for the European Association for Endoscopic Surgeons (EAES) [J].
Francis, Nader ;
Kazaryan, Airazat M. ;
Pietrabissa, Andrea ;
Goitein, David ;
Yiannakopoulou, Eugenia ;
Agresta, Ferdinando ;
Khatkov, Igor ;
Schulze, Svend ;
Arulampalam, Tan ;
Tomulescu, Victor ;
Kim, Young-Woo ;
Targarona, Eduardo Ma ;
Zaninotto, Giovanni .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2017, 31 (05) :2042-2049
[10]  
Guizard N, 2019, GASTROENTEROLOGY, V156, pS48