Stability of Polya-Szego inequality for log-concave functions

被引:18
作者
Barchiesi, M. [1 ]
Capriani, G. M. [2 ]
Fusco, N. [1 ]
Pisante, G. [3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Univ Munster, Appl Math Munster, D-48149 Munster, Germany
[3] Univ Naples 2, Dipartimento Matemat & Fis, I-81100 Caserta, Italy
基金
欧洲研究理事会;
关键词
Polya-Szego; Rearrangements; Log-concavity; BOUNDARY-VALUE-PROBLEMS; STEINER SYMMETRIZATION; MINIMAL REARRANGEMENTS; SOBOLEV FUNCTIONS;
D O I
10.1016/j.jfa.2014.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantitative version of Polya-Szego inequality is proven for log-concave functions in the case of Steiner and Schwarz rearrangements. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2264 / 2297
页数:34
相关论文
共 22 条
[1]  
[Anonymous], PREPRINT
[2]  
[Anonymous], 2000, Oxford Mathematical Monographs
[3]   Stability of the Steiner symmetrization of convex sets [J].
Barchiesi, M. ;
Cagnetti, F. ;
Fusco, N. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) :1245-1278
[4]  
Barvinok A., 2002, Grad. Stud. Math, V54
[5]  
BOURGAIN J, 1989, LECT NOTES MATH, V1376, P264
[6]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[7]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[8]   Steiner symmetrization is continuous in W-1,W-p [J].
Burchard, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (05) :823-860
[9]   The Steiner rearrangement in any codimension [J].
Capriani, Giuseppe Maria .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :517-548
[10]   The perimeter inequality under Steiner symmetrization:: Cases of equality [J].
Chlebík, M ;
Cianchi, A ;
Fusco, N .
ANNALS OF MATHEMATICS, 2005, 162 (01) :525-555