A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries

被引:55
|
作者
Kim, Kyung-Jin [1 ]
Lee, Taek-Soo [1 ]
Kim, Hyung-Giun [1 ]
Lim, Sung-Hwan [1 ]
Lee, Sung-Man [1 ]
机构
[1] Kangwon Natl Univ, Dept Nano Appl Engn, Chunchon 20070, Kangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
Anode material; Hard carbon; Microcrystalline graphite; Particle morphology; Lithium ion battery; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; HIGH-POWER; NEGATIVE ELECTRODE; NATURAL GRAPHITE; CARBON; INSERTION;
D O I
10.1016/j.electacta.2014.04.171
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hard carbon and microcrystalline graphite (MG) core-shell structured composite materials are prepared, and their electrochemical performances as an anode material for lithium-ion batteries are reported. The composite materials are obtained by coating a mixture of MG and pitch onto hard carbon particles, followed by heating at 1200 degrees C under an argon atmosphere for 1 h. The surface of the hard carbon is subsequently covered with a layer of the MG/pitch carbon composite. In the coating layer of the MG/pitch carbon composite, the MG particles are divided into nanoscale graphite sheets, and uniformly dispersed within the pitch of carbon matrix. The composite particles have a rounded shape, especially when the content of MG increases, which can improve their packing density compared to hard carbon having sharp edges. Anodes prepared from these composite materials exhibit enhanced electrochemical performances, including a high reversible capacity, high initial coulombic efficiency, high charging/discharging rate capability, and desirable cycling stability. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [21] Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries
    Wang, Ke
    He, Xiangming
    Wang, Li
    Ren, Jianguo
    Jiang, Changyin
    Wan, Chunrong
    SOLID STATE IONICS, 2007, 178 (1-2) : 115 - 118
  • [22] CuO/polypyrrole core-shell nanocomposites as anode materials for lithium-ion batteries
    Yin, Zhigang
    Ding, Yunhai
    Zheng, Qingdong
    Guan, Lunhui
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 20 : 40 - 43
  • [23] Fe3O4/carbon core-shell nanotubes as promising anode materials for lithium-ion batteries
    Xia, Hui
    Wan, Yunhai
    Yuan, Guoliang
    Fu, Yongsheng
    Wang, Xin
    JOURNAL OF POWER SOURCES, 2013, 241 : 486 - 493
  • [24] Si-carbon core-shell composite anode in lithium secondary batteries
    Jung, Yoon Seok
    Lee, Kyu T.
    Oh, Seung M.
    ELECTROCHIMICA ACTA, 2007, 52 (24) : 7061 - 7067
  • [25] Synthesis of Carbon/Tin Composite Anode Materials for Lithium-Ion Batteries
    Li, Meng-Yuan
    Wang, Yan
    Liu, Chun-Ling
    Zhang, Cheng
    Dong, Wen-Sheng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : A91 - A97
  • [26] Carbon@SnS2 core-shell microspheres for lithium-ion battery anode materials
    Guoyun Yu
    Xiujuan Chen
    Ansong Wang
    Youliang Wang
    Ionics, 2018, 24 : 2915 - 2923
  • [27] Carbon@SnS2 core-shell microspheres for lithium-ion battery anode materials
    Yu, Guoyun
    Chen, Xiujuan
    Wang, Ansong
    Wang, Youliang
    IONICS, 2018, 24 (10) : 2915 - 2923
  • [28] Hard carbon/lithium composite anode materials for Li-ion batteries
    Sun, Hao
    He, Xiangming
    Ren, Jianguo
    Li, Jianjun
    Jiang, Changyin
    Wan, Chunrong
    ELECTROCHIMICA ACTA, 2007, 52 (13) : 4312 - 4316
  • [29] A Double Core-shell Structure Silicon Carbon Composite Anode Material for a Lithium Ion Battery
    Xiaoqiao Hu
    Shimin Huang
    Xianhua Hou
    Hedong Chen
    Haiqing Qin
    Qiang Ru
    Benli Chu
    Silicon, 2018, 10 : 1443 - 1450
  • [30] A Double Core-shell Structure Silicon Carbon Composite Anode Material for a Lithium Ion Battery
    Hu, Xiaoqiao
    Huang, Shimin
    Hou, Xianhua
    Chen, Hedong
    Qin, Haiqing
    Ru, Qiang
    Chu, Benli
    SILICON, 2018, 10 (04) : 1443 - 1450