Performance of a Vertical 4H-SiC Photoconductive Switch With AZO Transparent Conductive Window and Silver Mirror Reflector

被引:45
作者
Cao, Penghui [1 ]
Huang, Wei [2 ]
Guo, Hui [1 ]
Zhang, Yuming [1 ]
机构
[1] Xidian Univ, Wide Bandgap Semicond Technol Disciplines State K, Xian 710071, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
4H Silicon Carbide (4H-SiC); aluminum doped ZnO (AZO); photoconductive semiconductor switch (PCSS); silver mirror; SILICON-CARBIDE;
D O I
10.1109/TED.2018.2815634
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new vertical geometry photoconductive switch device based on vanadium compensated 4H Silicon Carbide (4H-SiC) is presented with the structure of aluminum doped ZnO (AZO) transparent conductive window on the top of 4H-SiC and a silver mirror reflector on the backside. For this newstructure, laser can trigger the device convenientlyby irradiate the electrodeface directly. Acircuit without load resistor is used to test the performance of device, and a switch is triggered by Nd:YAG 532-nm laser (10-ns full-width at half-maximum). Results show that the minimum on-state resistance is 7.5 Omega at an illumination density of 18.2 MW/cm(2), and the breakdown voltage is 12 kV (breakdown electric field is 260 kV/cm). In particular, the optical utilization efficiency of laser energy and the minimum on-state resistance performance are significantly improved in this new vertical geometry photoconductive switch by the AZO film and mirror reflector.
引用
收藏
页码:2047 / 2051
页数:5
相关论文
共 13 条
[1]   Assessing the role of trap-to-band impact ionization and hole transport on the dark currents of 4H-SiC photoconductive switches containing deep defects [J].
Chowdhury, A. R. ;
Dickens, J. C. ;
Neuber, A. A. ;
Joshi, R. P. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (24)
[2]   Contact Extensions Over a High-k Dielectric Layer for Surface Field Mitigation in High Power 4H-SiC Photoconductive Switches [J].
Chowdhury, Animesh Roy ;
Mauch, Daniel ;
Joshi, Ravi P. ;
Neuber, Andreas A. ;
Dickens, James .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (08) :3171-3176
[3]   4H-SiC photoconductive switching devices for use in high-power applications [J].
Dogan, S ;
Teke, A ;
Huang, D ;
Morkoç, H ;
Roberts, CB ;
Parish, J ;
Ganguly, B ;
Smith, M ;
Myers, RE ;
Saddow, SE .
APPLIED PHYSICS LETTERS, 2003, 82 (18) :3107-3109
[4]   Intrinsic Photoconductive Switches Based on Semi-Insulator 4H-SiC [J].
Jiang, Shuqing ;
Song, Chaoyang ;
Zhang, Liuqiang ;
Zhang, Yuming ;
Huang, Wei ;
Guo, Hui .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (04) :1582-1586
[5]   ON-state characteristics of a high-power photoconductive switch fabricated from compensated 6-H silicon carbide [J].
Kelkar, Kapil S. ;
Islam, Naz E. ;
Kirawanich, Phumin ;
Fessler, Christopher M. ;
Nunnally, William C. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (01) :287-292
[6]  
Mauch Daniel L., 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), DOI 10.1109/PLASMA.2013.6635034
[7]  
Mauch D, 2014, IEEE INT POWER MODUL, P23, DOI 10.1109/IPMHVC.2014.7287198
[8]   High Power Lateral Silicon Carbide Photoconductive Semiconductor Switches and Investigation of Degradation Mechanisms [J].
Mauch, Daniel ;
Sullivan, William, III ;
Bullick, Alan ;
Neuber, Andreas ;
Dickens, James .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (06) :2021-2031
[9]   6H-SiC photoconductive switches triggered at below bandgap wavelengths [J].
Sullivan, J. S. ;
Stanley, J. R. .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2007, 14 (04) :980-985
[10]   High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch [J].
Sullivan, J. S. .
APPLIED PHYSICS LETTERS, 2014, 104 (17)