On the Symmetry of Minimizers

被引:31
作者
Maris, Mihai [1 ]
机构
[1] Univ Franche Comte, Dept Math, UMR 6623, F-25030 Besancon, France
关键词
VARIATIONAL-PROBLEMS; RADIAL SYMMETRY; EQUATIONS;
D O I
10.1007/s00205-008-0136-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a large class of variational problems we prove that minimizers are symmetric whenever they are C (1).
引用
收藏
页码:311 / 330
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]   ONE-DIMENSIONAL VARIATIONAL-PROBLEMS WHOSE MINIMIZERS DO NOT SATISFY THE EULER-LAGRANGE EQUATION [J].
BALL, JM ;
MIZEL, VJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 90 (04) :325-388
[3]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   Positivity and radial symmetry of solutions to some variational problems in RN [J].
Brock, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) :226-243
[6]  
Chen Y.-Z., 1998, Translations of Mathematical Monographs, V174
[7]  
Ferrero Alberto, 2003, Adv. Differential Equations, V8, P1081
[8]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C
[9]  
GIAQUINTA M, 1993, INTRO REGULARITY THE
[10]  
Jan Mal~y, 1997, MATH SURVEYS MONOGRA, V51