Saliency detection based on integrated features

被引:33
作者
Jing, Huiyun [1 ]
He, Xin [2 ]
Han, Qi [1 ]
Abd El-Latif, Ahmed A. [1 ,3 ]
Niu, Xiamu [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin, Peoples R China
[2] Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing, Peoples R China
[3] Menoufia Univ, Fac Sci, Dept Math, Menoufia, Egypt
基金
中国国家自然科学基金;
关键词
Saliency map; Feature level fusion; Integrated features; Local and global measurements for estimating saliency; VISUAL-ATTENTION; DETECTION MODEL; IMAGE; MAP;
D O I
10.1016/j.neucom.2013.02.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel computational model for saliency detection. The proposed model utilizes feature level fusion method to integrate different kinds of visual features. The integrated features are used to measure saliency, so no separate feature conspicuity maps, or the subsequent combination of them is needed in our model. Then, the new model combines the local and global measurements for estimating saliency (termed LGMES) by using local and global kernel density estimations during the saliency computation process. Experimental results on two human eye fixation datasets demonstrate that the proposed model outperforms the state-of-the-art methods. Meanwhile, the proposed saliency measurement is more efficient than those methods using separately local or global measurements. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
[31]   An EMD based approach for Saliency Detection in Multimedia Data [J].
Bora, Amit ;
Sharma, Shanu ;
Sharma, Sachin .
PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, :232-236
[32]   Learning-Based Saliency Detection of Face Images [J].
Ren, Yun ;
Wang, Zulin ;
Xu, Mai .
IEEE ACCESS, 2017, 5 :6502-6514
[33]   Multiview saliency detection based on improved multimanifold ranking [J].
Shi, Yanjiao ;
Yi, Yugen ;
Zhang, Ke ;
Kong, Jun ;
Zhang, Ming ;
Wang, Jianzhong .
JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
[34]   Human Visual System-Based Saliency Detection for High Dynamic Range Content [J].
Dong, Yuanyuan ;
Pourazad, Mahsa T. ;
Nasiopoulos, Panos .
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (04) :549-562
[35]   Region-based saliency detection [J].
Manipoonchelvi, Pandivalavan ;
Muneeswaran, Karuppiah .
IET IMAGE PROCESSING, 2014, 8 (09) :519-527
[36]   Saliency detection based on diffusion maps [J].
Yang, Zhi ;
Li, DeHua ;
Yu, Jin-Gang .
OPTIK, 2014, 125 (18) :5202-5206
[37]   Optimal contrast based saliency detection [J].
Qian, Xiaoliang ;
Han, Junwei ;
Cheng, Gong ;
Guo, Lei .
PATTERN RECOGNITION LETTERS, 2013, 34 (11) :1270-1278
[38]   Saliency detection based on foreground appearance and background-prior [J].
Li, Lu ;
Zhou, Fugen ;
Zheng, Yu ;
Bai, Xiangzhi .
NEUROCOMPUTING, 2018, 301 :46-61
[39]   SUPERPIXEL-BASED SALIENCY DETECTION [J].
Liu, Zhi ;
Le Meur, Olivier ;
Luo, Shuhua .
2013 14TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES (WIAMIS), 2013,
[40]   Color transfer based on saliency detection [J].
Liu, Meng ;
Liu, Yantao ;
Liu, Xiuping ;
Wang, Zitong .
Journal of Information and Computational Science, 2015, 12 (12) :4557-4564