A Study on Energy-Related GHG Scenario of Thailand's Textile Industry

被引:0
作者
Dechasiri, Phongpiti [1 ]
Wangjiraniran, Weerin [2 ]
Suriyawong, Achariya [3 ]
机构
[1] Chulalongkorn Univ, Fac Grad Sch, Int Dept Environm Sci, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Energy Res Inst, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Fac Engn, Environm Engn Dept, Bangkok 10330, Thailand
来源
ENVIRONMENTAL PROTECTION AND RESOURCES EXPLOITATION, PTS 1-3 | 2013年 / 807-809卷
关键词
Energy consumption; Energy Scenario; Greenhouse Gas and Textile Industry;
D O I
10.4028/www.scientific.net/AMR.807-809.268
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigated the scenarios of Greenhouse Gas (GHG) emission for Thailand's textile industries between 2010 to 2030. GHG emission for Business as usual (BAU) Scenario is increasing from 5.10 to 11.72 Million tons carbon dioxide equivalent (tCO(2)eq) (approximately 4.3% per year). The IME scenario that new installation of high efficient equipment showed the GHG mitigate as 6.34% in 2030 compared with BAU scenario that including motor, compressor and boiler have contributed as 62.6, 30.6 and 6.8% of the GHG mitigation potential, respectively. On the other hand, the FS scenario which is switching from fuel oil to natural gas mitigates GHG emission as 0.97%.
引用
收藏
页码:268 / +
页数:2
相关论文
共 7 条
[1]   Energy consumption analysis of Spanish food and drink, textile, chemical and non-metallic mineral products sectors [J].
Aranda-Uson, Alfonso ;
Ferreira, German ;
Mainar-Toledo, M. D. ;
Scarpellini, Sabina ;
Llera Sastresa, Eva .
ENERGY, 2012, 42 (01) :477-485
[2]   Energy conservation potential in Taiwanese textile industry [J].
Hong, Gui-Bing ;
Su, Te-Li ;
Lee, Jenq-Daw ;
Hsu, Tsung-Chi ;
Chen, Hua-Wei .
ENERGY POLICY, 2010, 38 (11) :7048-7053
[3]  
[IEA] International Energy Agency, 2011, EN EFF POL OPP EL MO
[4]  
International Energy Agency (IEA), 2011, IND COMB BOIL
[5]  
Jarumaneeroj P., 2005, THESIS
[6]  
Khulsuparucha P., 2005, THESIS
[7]  
Nidhiritdhikrai Raksanai, 2013, Advanced Materials Research, V622-623, P1094, DOI 10.4028/www.scientific.net/AMR.622-623.1094