Fixed-Parameter Tractability of (n - k) List Coloring

被引:3
作者
Banik, Aritra [1 ]
Jacob, Ashwin [2 ]
Paliwal, Vijay Kumar [3 ]
Raman, Venkatesh [4 ]
机构
[1] Natl Inst Sci Educ & Res, HBNI, Bhubaneswar, India
[2] Inst Math Sci, Theoret Comp Sci, GB-09,CIT Campus, Chennai 600113, Tamil Nadu, India
[3] DE Shaw India Private Ltd, Hyderabad, India
[4] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
关键词
Parameterized Complexity; List Coloring; Coloring; Fixed Parameter Tractability;
D O I
10.1007/s00224-020-10014-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the list-coloring problem from the perspective of parameterized complexity. In the classical graph coloring problem we are given an undirected graph and the goal is to color the vertices of the graph with minimum number of colors so that end points of each edge get different colors. In list-coloring, each vertex is given a list of allowed colors with which it can be colored. An interesting parameterization for graph coloring that has been studied is whether the graph can be colored with n - k colors, where k is the parameter and n is the number of vertices. This is known to be fixed parameter tractable. Our main result is that this can be generalized for list-coloring as well. More specifically, we show that, given a graph with each vertex having a list of size n-k, it can be determined in f(k)n(O(1)) time, for some function f of k, whether there is a coloring that respects the lists.
引用
收藏
页码:1307 / 1316
页数:10
相关论文
共 14 条
[1]   Some (in)tractable Parameterizations of Coloring and List-Coloring [J].
Arora, Pranav ;
Banik, Aritra ;
Paliwal, Vijay Kumar ;
Raman, Venkatesh .
FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 :126-139
[2]  
Banik A, 2019, ADV COMPUT ELECTR EN, P65, DOI 10.4018/978-1-5225-5693-0.ch004
[3]   SET PARTITIONING VIA INCLUSION-EXCLUSION [J].
Bjorklund, Andreas ;
Husfeldt, Thore ;
Koivisto, Mikko .
SIAM JOURNAL ON COMPUTING, 2009, 39 (02) :546-563
[4]   Parameterized complexity of vertex colouring [J].
Cai, LZ .
DISCRETE APPLIED MATHEMATICS, 2003, 127 (03) :415-429
[5]  
Chor B, 2004, LECT NOTES COMPUT SC, V3353, P257
[6]  
Cygan M., 2015, Parameterized algorithms, V5, DOI DOI 10.1007/978-3-319-21275-3
[8]  
Diestel Reinhard, 2012, Graph Theory, V173, P7
[9]   On the complexity of some colorful problems parameterized by treewidth [J].
Fellows, Michael R. ;
Fomin, Fedor V. ;
Lokshtanov, Daniel ;
Rosamond, Frances ;
Saurabh, Saket ;
Szeider, Stefan ;
Thomassen, Carsten .
INFORMATION AND COMPUTATION, 2011, 209 (02) :143-153
[10]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1