Silicon optomechanical crystal resonator at millikelvin temperatures

被引:96
|
作者
Meenehan, Sean M. [1 ,2 ]
Cohen, Justin D. [1 ,2 ]
Groeblacher, Simon [1 ,2 ,3 ]
Hill, Jeff T. [1 ,2 ]
Safavi-Naeini, Amir H. [1 ,2 ]
Aspelmeyer, Markus [3 ]
Painter, Oskar [1 ,2 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[3] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol VCQ, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
OSCILLATOR; CAVITIES; MOTION;
D O I
10.1103/PhysRevA.90.011803
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6 GHz are performed at subkelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator from measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (T-f = 10 mK), the localized mechanical resonance is found to couple at a rate of gamma(i)/2 pi = 400 Hz (Q(m) = 9x10(6)) to a thermal bath of temperature Tb approximate to 270 mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Optomechanical Crystals at Millikelvin Temperatures
    Painter, O. J.
    Ren, H.
    Luo, J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [2] High Q-Factor Diamond Optomechanical Resonators with Silicon Vacancy Centers at Millikelvin Temperatures
    Joe, Graham
    Chia, Cleaven
    Pingault, Benjamin
    Haas, Michael
    Chalupnik, Michelle
    Cornell, Eliza
    Kuruma, Kazuhiro
    Machielse, Bartholomeus
    Sinclair, Neil
    Meesala, Srujan
    Loncar, Marko
    NANO LETTERS, 2024, 24 (23) : 6831 - 6837
  • [3] Measurement of a magnonic crystal at millikelvin temperatures
    Kosen, S.
    Morris, R. G. E.
    van Loo, A. F.
    Karenowska, A. D.
    APPLIED PHYSICS LETTERS, 2018, 112 (01)
  • [4] Optomechanical Coupling in a Quartz Crystal Resonator for Cryogenic Clocks
    Bon, J.
    Rosenziveig, K.
    Abbe, Ph.
    Rocher, C.
    Galliou, S.
    Neuhaus, L.
    Deleglise, S.
    Briant, T.
    Cohadon, P. -F.
    2018 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (IFCS), 2018, : 147 - 148
  • [5] Soft-Clamped Silicon Nitride String Resonators at Millikelvin Temperatures
    Gisler, Thomas
    Helal, Mohamed
    Sabonis, Deividas
    Grob, Urs
    Heritier, Martin
    Degen, Christian L.
    Ghadimi, Amir H.
    Eichler, Alexander
    PHYSICAL REVIEW LETTERS, 2022, 129 (10)
  • [6] A dissipative self-sustained optomechanical resonator on a silicon chip
    Huang, J. G.
    Li, Y.
    Chin, L. K.
    Cai, H.
    Gu, Y. D.
    Karim, M. F.
    Wu, J. H.
    Chen, T. N.
    Yang, Z. C.
    Hao, Y. L.
    Qiu, C. W.
    Liu, A. Q.
    APPLIED PHYSICS LETTERS, 2018, 112 (05)
  • [7] Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high-Q factor whispering gallery modes
    Creedon, Daniel L.
    Tobar, Michael E.
    Le Floch, Jean-Michel
    Reshitnyk, Yarema
    Duty, Timothy
    PHYSICAL REVIEW B, 2010, 82 (10):
  • [8] Two-dimensional optomechanical crystal resonator in gallium arsenide
    Povey, Rhys G.
    Chou, Ming-Han
    Andersson, Gustav
    Conner, Christopher R.
    Grebel, Joel
    Joshi, Yash J.
    Miller, Jacob M.
    Qiao, Hong
    Wu, Xuntao
    Yan, Haoxiong
    Cleland, Andrew N.
    PHYSICAL REVIEW APPLIED, 2024, 21 (01)
  • [9] Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 108
    Yuan, Mingyun
    Cohen, Martijn A.
    Steele, Gary A.
    APPLIED PHYSICS LETTERS, 2015, 107 (26)
  • [10] Optomechanical Transduction of an Integrated Silicon Cantilever Probe Using a Microdisk Resonator
    Srinivasan, Kartik
    Miao, Houxun
    Rakher, Matthew T.
    Davanco, Marcelo
    Aksyuk, Vladimir
    NANO LETTERS, 2011, 11 (02) : 791 - 797