Bel-Robinson energy and constant mean curvature foliations

被引:9
作者
Andersson, L [1 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
来源
ANNALES HENRI POINCARE | 2004年 / 5卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00023-004-0167-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An energy estimate is proved for the Bel-Robinson energy along a constant mean curvature foliation in a spatially compact vacuum spacetime, assuming an L-infinity bound on the second fundamental form, and a bound on a spacetime version of Bel-Robinson energy.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 10 条
[1]   On long-time evolution in general relativity and geometrization of 3-manifolds [J].
Anderson, MT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (03) :533-567
[2]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[3]   Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds, I [J].
Anderson, MT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (05) :855-967
[4]  
ANDERSON MT, 1992, J DIFFER GEOM, V35, P265
[5]   Constant mean curvature foliations of flat space-times [J].
Andersson, L .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (05) :1125-1150
[6]  
ANDERSSON L, IN PRESS 50 YEARS CA
[7]   HYPERBOLICITY OF THE 3+1 SYSTEM OF EINSTEIN EQUATIONS [J].
CHOQUETBRUHAT, Y ;
RUGGERI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (02) :269-275
[8]  
Gilbarg D., 1977, Grundlehren der mathematischen Wissenschaften, V224
[9]  
KLAINERMAN S, 2001, GEOMETRIC FOURIER ME
[10]  
Rendall AD, 1996, HELV PHYS ACTA, V69, P490