Efficient (Cu1-xAgx)2ZnSn(S,Se)4 solar cells on flexible Mo foils

被引:25
作者
Yu, Xue [1 ]
Cheng, Shuying [1 ,2 ]
Yan, Qiong [1 ]
Yu, Jinling [1 ,2 ]
Qiu, Wen [1 ]
Zhou, Zhengji [3 ]
Zheng, Qiao [1 ,2 ]
Wu, Sixin [3 ]
机构
[1] Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Photovolat Sci & E, Changzhou 213164, Peoples R China
[3] Henan Univ, Collaborat Innovat Ctr Nano Funct Mat & Applicat, Key Lab Special Funct Mat MOE, Kaifeng 475004, Henan, Peoples R China
来源
RSC ADVANCES | 2018年 / 8卷 / 49期
基金
中国国家自然科学基金;
关键词
EARTH-ABUNDANT; FILM; CU2ZNSNS4; DEFECTS; DEVICE; PRECURSOR; GROWTH; LAYER; CU;
D O I
10.1039/c8ra04958k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cation substitution plays a crucial role in improving the efficiency of Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells. In this work, we report a significant efficiency enhancement of flexible CZTSSe solar cells on Mo foils by partial substitution of Cu+ with Ag+. It is found that the band gap (E-g) of (Cu1-xAgx)(2)ZnSn(S,Se)(4) (CAZTSSe) thin films can be adjusted by doping with Ag with x from 0 to 6%, and the minimum E-g is achieved with x = 5%. We also found that Ag doping can obviously increase the average grain size of the CAZTSSe absorber from 0.4 to 1.1 mm. Additionally, the depletion width (W-d) at the heterojunction interface of CAZTSSe/CdS is found to be improved. As a result, the open-circuit voltage deficit (V-oc,V-def) is gradually decreased, and the band tailing is suppressed. Benefiting from the enhanced open-circuit voltage (V-oc), the power conversion efficiency (PCE) is successfully enhanced from 4.34% (x = 0) to 6.24% (x = 4%), and the V-oc, def decreases from 915 to 848 mV.
引用
收藏
页码:27686 / 27694
页数:9
相关论文
共 31 条
[1]   Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells [J].
Brammertz, G. ;
Buffiere, M. ;
Oueslati, S. ;
ElAnzeery, H. ;
Ben Messaoud, K. ;
Sahayaraj, S. ;
Koeble, C. ;
Meuris, M. ;
Poortmans, J. .
APPLIED PHYSICS LETTERS, 2013, 103 (16)
[2]   Improving efficiencies of Cu2ZnSnS4 nanoparticle based solar cells on flexible glass substrates [J].
Brew, Kevin W. ;
McLeod, Steven M. ;
Garner, Sean M. ;
Agrawal, Rakesh .
THIN SOLID FILMS, 2017, 642 :110-116
[3]  
Burgelman M, 1997, PROG PHOTOVOLTAICS, V5, P121, DOI 10.1002/(SICI)1099-159X(199703/04)5:2<121::AID-PIP159>3.0.CO
[4]  
2-4
[5]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[6]   Sol-gel processed CZTS thin film solar cell on flexible molybdenum foil [J].
Dong, Limei ;
Cheng, Shuying ;
Lai, Yunfeng ;
Zhang, Hong ;
Jia, Hongjie .
THIN SOLID FILMS, 2017, 626 :168-172
[7]   Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying [J].
Hages, Charles J. ;
Koeper, Mark J. ;
Agrawal, Rakesh .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 :342-348
[8]   Thin-film solar cells: Device measurements and analysis [J].
Hegedus, SS ;
Shafarman, WN .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :155-176
[9]   Pure Sulfide Cu2ZnSnS4 Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack [J].
Jiang, Feng ;
Ikeda, Shigeru ;
Harada, Takashi ;
Matsumura, Michio .
ADVANCED ENERGY MATERIALS, 2014, 4 (07)
[10]  
Khare A., 2012, J APPL PHYS, V111, P3