Interfacial optimization between cathode and 20 μm-thickness solid electrolyte membrane via in-situ polymerization for lithium metal batteries

被引:15
作者
Ma, Jian [1 ]
Jiang, Hao [1 ]
Chen, Lihan [1 ]
Wu, Yueyue [1 ]
Liu, Yongchao [1 ]
Ping, Weiwei [1 ]
Song, Xiaohui [1 ]
Xiang, Hongfa [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Anhui Prov Key Lab Adv Funct Mat & Devices, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid polymer electrolyte (SPE); Ultrathin SPE membrane; In-situ polymerization; Interfacial contact improvement; Lithium metal batteries; INTERPHASE; DENDRITE; GROWTH; LAYER;
D O I
10.1016/j.jpowsour.2022.231517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolyte membranes face a huge challenge in achieving satisfactory interfacial contact with electrodes, which severely impairs the rate performance and cycle life of solid-state lithium batteries. In this work, we fabricated an ultrathin solid polymer electrolyte (SPE) membrane, and based on it we demonstrated the interfacial contact optimization strategy by in-situ polymerization. The free-stranding PVDF-HFP-LiTFSI membrane with a thickness of 20 mu m shows an ionic conductivity of 1.2 x 10-4 S cm- 1 at room temperature. The poly (ethylene glycol) diacrylate-based in-situ polymerized electrolyte tightly connects the cathode and the SPE membrane, decreasing the interfacial resistance from 9380 Cd cm2 to 1100 Cd cm2. Compared with the traditional method employing liquid electrolyte for interfacial wetting, extended electrochemical window (4.6 V) and much improved thermal stability are obtained. Full cell employing LiFePO4 cathode and lithium metal anode shows an initial capacity of 138.9 mAh g-1 under a charge/discharge rate of 0.5C (85 mA g-1) at 60 degrees C, with a capacity retention ratio of 84.9% and a high average Coulombic efficiency (98.7%) after 300 cycles, remarkably better than those of its liquid electrolyte-used counterpart. Our work demonstrates that the application of in-situ polymerization into interfacial contact improvement between SPE and cathode possesses wide application prospects.
引用
收藏
页数:10
相关论文
共 80 条
[71]   Dendrites in Solid-State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation [J].
Yu, Zhenjiang ;
Zhang, Xueyan ;
Fu, Chuankai ;
Wang, Han ;
Chen, Ming ;
Yin, Geping ;
Huo, Hua ;
Wang, Jiajun .
ADVANCED ENERGY MATERIALS, 2021, 11 (18)
[72]   Coupled crack propagation and dendrite growth in solid electrolyte of all-solid-state battery [J].
Yuan, Chunhao ;
Gao, Xiang ;
Jia, Yikai ;
Zhang, Wen ;
Wu, Qingliu ;
Xu, Jun .
NANO ENERGY, 2021, 86
[73]   Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode [J].
Zhao, Chen-Zi ;
Zhao, Qing ;
Liu, Xiaotun ;
Zheng, Jingxu ;
Stalin, Sanjuna ;
Zhang, Qiang ;
Archer, Lynden A. .
ADVANCED MATERIALS, 2020, 32 (12)
[74]   Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries [J].
Zhao, Qing ;
Liu, Xiaotun ;
Stalin, Sanjuna ;
Khan, Kasim ;
Archer, Lynden A. .
NATURE ENERGY, 2019, 4 (05) :365-373
[75]   Polymer electrolyte with dual functional groups designed via theoretical calculation for all-solid-state lithium batteries [J].
Zhao, Yanbiao ;
Bai, Yang ;
Liu, Anmin ;
Li, Weidong ;
An, Maozhong ;
Bai, Yongping ;
Chen, Guorong .
JOURNAL OF POWER SOURCES, 2020, 450
[76]   Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects [J].
Zhou, Dong ;
Shanmukaraj, Devaraj ;
Tkacheva, Anastasia ;
Armand, Michel ;
Wang, Guoxiu .
CHEM, 2019, 5 (09) :2326-2352
[77]   SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life [J].
Zhou, Dong ;
Liu, Ruliang ;
He, Yan-Bing ;
Li, Fengyun ;
Liu, Ming ;
Li, Baohua ;
Yang, Quan-Hong ;
Cai, Qiang ;
Kang, Feiyu .
ADVANCED ENERGY MATERIALS, 2016, 6 (07)
[78]   In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries [J].
Zhou, Dong ;
He, Yan-Bing ;
Liu, Ruliang ;
Liu, Ming ;
Du, Hongda ;
Li, Baohua ;
Cai, Qiang ;
Yang, Quan-Hong ;
Kang, Feiyu .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[79]   Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries [J].
Zhou, Weidong ;
Wang, Zhaoxu ;
Pu, Yuan ;
Li, Yutao ;
Xin, Sen ;
Li, Xiaofang ;
Chen, Jianfeng ;
Goodenough, John B. .
ADVANCED MATERIALS, 2019, 31 (04)
[80]   Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12 [J].
Zhu, Jianping ;
Xiang, Yuxuan ;
Zhao, Jun ;
Wang, Hongchun ;
Li, Yixiao ;
Zheng, Bizhu ;
He, Huajin ;
Zhang, Zhongru ;
Huang, Jianyu ;
Yang, Yong .
ENERGY STORAGE MATERIALS, 2022, 44 :190-196