Interfacial optimization between cathode and 20 μm-thickness solid electrolyte membrane via in-situ polymerization for lithium metal batteries

被引:15
作者
Ma, Jian [1 ]
Jiang, Hao [1 ]
Chen, Lihan [1 ]
Wu, Yueyue [1 ]
Liu, Yongchao [1 ]
Ping, Weiwei [1 ]
Song, Xiaohui [1 ]
Xiang, Hongfa [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Anhui Prov Key Lab Adv Funct Mat & Devices, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid polymer electrolyte (SPE); Ultrathin SPE membrane; In-situ polymerization; Interfacial contact improvement; Lithium metal batteries; INTERPHASE; DENDRITE; GROWTH; LAYER;
D O I
10.1016/j.jpowsour.2022.231517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolyte membranes face a huge challenge in achieving satisfactory interfacial contact with electrodes, which severely impairs the rate performance and cycle life of solid-state lithium batteries. In this work, we fabricated an ultrathin solid polymer electrolyte (SPE) membrane, and based on it we demonstrated the interfacial contact optimization strategy by in-situ polymerization. The free-stranding PVDF-HFP-LiTFSI membrane with a thickness of 20 mu m shows an ionic conductivity of 1.2 x 10-4 S cm- 1 at room temperature. The poly (ethylene glycol) diacrylate-based in-situ polymerized electrolyte tightly connects the cathode and the SPE membrane, decreasing the interfacial resistance from 9380 Cd cm2 to 1100 Cd cm2. Compared with the traditional method employing liquid electrolyte for interfacial wetting, extended electrochemical window (4.6 V) and much improved thermal stability are obtained. Full cell employing LiFePO4 cathode and lithium metal anode shows an initial capacity of 138.9 mAh g-1 under a charge/discharge rate of 0.5C (85 mA g-1) at 60 degrees C, with a capacity retention ratio of 84.9% and a high average Coulombic efficiency (98.7%) after 300 cycles, remarkably better than those of its liquid electrolyte-used counterpart. Our work demonstrates that the application of in-situ polymerization into interfacial contact improvement between SPE and cathode possesses wide application prospects.
引用
收藏
页数:10
相关论文
共 80 条
[41]   The Unusual Conductivity of Na+ in PEO-Based Statistical Copolymer Solid Electrolytes: When Less Means More [J].
St-Onge, Vincent ;
Rochon, Sylviane ;
Daigle, Jean-Christophe ;
Soldera, Armand ;
Claverie, Jerome P. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (49) :25897-25904
[42]   Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward High-energy, Safe and Adaptable Lithium Batteries [J].
Sun, Jianqi ;
Yao, Xiangming ;
Li, Yaogang ;
Zhang, Qinghong ;
Hou, Chengyi ;
Shi, Qiuwei ;
Wang, Hongzhi .
ADVANCED ENERGY MATERIALS, 2020, 10 (31)
[43]   Matchmaker of Marriage between a Li Metal Anode and NASICON-Structured Solid-State Electrolyte: Plastic Crystal Electrolyte and Three-Dimensional Host Structure [J].
Tong, Zizheng ;
Wang, Shu-Bo ;
Jena, Anirudha ;
Liu, Chia-Erh ;
Liao, Shih-Chieh ;
Chen, Jin-Ming ;
Chang, Ho ;
Hu, Shu-Fen ;
Guo, Xiangxin ;
Liu, Ru-Shi .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) :44754-44761
[44]   In situ polymerization process: an essential design tool for lithium polymer batteries [J].
Vijayakumar, Vidyanand ;
Anothumakkool, Bihag ;
Kurungot, Sreekumar ;
Winter, Martin ;
Nair, Jijeesh Ravi .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (05) :2708-2788
[45]   Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries [J].
Wang, Chengwei ;
Fu, Kun ;
Kammampata, Sanoop Palakkathodi ;
Mcowen, Dennis W. ;
Samson, Alfred Junio ;
Zhang, Lei ;
Hitz, Gregory T. ;
Nolan, Adelaide M. ;
Wachsman, Eric D. ;
Mo, Yifei ;
Thangadurai, Venkataraman ;
Hu, Liangbing .
CHEMICAL REVIEWS, 2020, 120 (10) :4257-4300
[46]   Asymmetric Polymer Electrolyte Constructed by Metal-Organic Framework for Solid-State, Dendrite-Free Lithium Metal Battery [J].
Wang, Guoxu ;
He, Pingge ;
Fan, Li-Zhen .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (03)
[47]   Thiol-Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium-Metal Batteries [J].
Wang, Hangchao ;
Wang, Qian ;
Cao, Xin ;
He, Yunyu ;
Wu, Kai ;
Yang, Jijin ;
Zhou, Henghui ;
Liu, Wen ;
Sun, Xiaoming .
ADVANCED MATERIALS, 2020, 32 (37)
[48]   Linking the Defects to the Formation and Growth of Li Dendrite in All-Solid-State Batteries [J].
Wang, Hongchun ;
Gao, Haowen ;
Chen, Xiaoxuan ;
Zhu, Jianping ;
Li, Wangqin ;
Gong, Zhengliang ;
Li, Yangxing ;
Wang, Ming-Sheng ;
Yang, Yong .
ADVANCED ENERGY MATERIALS, 2021, 11 (42)
[49]   In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries [J].
Wang, Saisai ;
Zhou, Lei ;
Tufail, Muhammad Khurram ;
Yang, Le ;
Zhai, Pengfei ;
Chen, Renjie ;
Yang, Wen .
CHEMICAL ENGINEERING JOURNAL, 2021, 415
[50]   Solidifying Cathode-Electrolyte Interface for Lithium-Sulfur Batteries [J].
Wang, Wen-Peng ;
Zhang, Juan ;
Chou, Jia ;
Yin, Ya-Xia ;
You, Ya ;
Xin, Sen ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2021, 11 (02)