Subsonic-Sonic Limit of Approximate Solutions to Multidimensional Steady Euler Equations

被引:57
作者
Chen, Gui-Qiang [1 ,2 ,3 ]
Huang, Fei-Min [4 ]
Wang, Tian-Yi [2 ,4 ,5 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Oxford OX2 6GG, England
[3] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Acad Sinica, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[5] Wuhan Univ Technol, Sch Sci, Dept Math, Wuhan 430070, Hubei, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
INFINITELY LONG NOZZLES; CONSERVATION-LAWS; TRANSONIC FLOW; EXISTENCE; SYSTEMS; DUCT;
D O I
10.1007/s00205-015-0905-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A compactness framework is established for approximate solutions to subsonic-sonic flows governed by the steady full Euler equations for compressible fluids in arbitrary dimension. The existing compactness frameworks for the two-dimensional irrotational case do not directly apply for the steady full Euler equations in higher dimensions. The new compactness framework we develop applies for both non-homentropic and rotational flows. One of our main observations is that the compactness can be achieved by using only natural weak estimates for the mass balance and the vorticity, along with the Bernoulli law and the entropy relation, through a more delicate analysis on the phase space. As direct applications, we establish two existence theorems for multidimensional subsonic-sonic full Euler flows through infinitely long nozzles.
引用
收藏
页码:719 / 740
页数:22
相关论文
共 32 条
[1]  
[Anonymous], 1999, SYSTEMS CONSERVATION
[2]   Stability of contact discontinuity for steady Euler system in infinite duct [J].
Bae, Myoungjean .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04) :917-936
[3]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[5]  
Bers L., 1958, Surveys Appl. Math, Vvol 3
[6]   Existence of steady subsonic Euler flows through infinitely long periodic nozzles [J].
Chen, Chao ;
Xie, Chunjing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (07) :4315-4331
[7]  
Chen G.-Q., 2006, HDB DIFFERENTIAL EQU, V2, P1
[8]   Divergence-measure fields and hyperbolic conservation laws [J].
Chen, GQ ;
Frid, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (02) :89-118
[9]   Vanishing viscosity method for transonic flow [J].
Chen, Gui-Qiang ;
Slemrod, Marshall ;
Wang, Dehua .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 189 (01) :159-188
[10]   On two-dimensional sonic-subsonic flow [J].
Chen, Gui-Qiang ;
Dafermos, Constantine M. ;
Slemrod, Marshall ;
Wang, Dehua .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :635-647