Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder

被引:23
作者
Gong, Wei [1 ]
Li, Pengfei [1 ]
Zhang, Yunheng [1 ]
Feng, Xuhui [2 ]
Major, Joshua [2 ]
DeVoto, Douglas [2 ]
Paret, Paul [2 ]
King, Charles [2 ]
Narumanchi, Sreekant [2 ]
Shen, Sheng [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
关键词
Nanowire array; ultracompliant; ultralow thermal resistance; long-term reliability; THERMAL INTERFACE MATERIALS; CARBON NANOTUBES; POWER; CHALLENGES; CONDUCTIVITY; ELECTRONICS; MECHANISM; DENSE;
D O I
10.1021/acs.nanolett.8b00692
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term "supersolder" to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional solders and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.
引用
收藏
页码:3586 / 3592
页数:7
相关论文
共 36 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]   Nanothermal Interface Materials: Technology Review and Recent Results [J].
Bar-Cohen, Avram ;
Matin, Kaiser ;
Narumanchi, Sreekant .
JOURNAL OF ELECTRONIC PACKAGING, 2015, 137 (04)
[3]   Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials [J].
Barako, Michael T. ;
Isaacson, Scott G. ;
Lian, Feifei ;
Pop, Eric ;
Dauskardt, Reinhold H. ;
Goodson, Kenneth E. ;
Tice, Jesse .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :42067-42074
[4]   Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites [J].
Barako, Michael T. ;
Roy-Panzer, Shilpi ;
English, Timothy S. ;
Kodama, Takashi ;
Asheghi, Mehdi ;
Kenny, Thomas W. ;
Goodson, Kenneth E. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) :19251-19259
[5]   Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications [J].
Baur, Jeff ;
Silverman, Edward .
MRS BULLETIN, 2007, 32 (04) :328-334
[6]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[7]   Photoacoustic characterization of carbon nanotube array thermal interfaces [J].
Cola, Baratunde A. ;
Xu, Jun ;
Cheng, Changrui ;
Xu, Xianfan ;
Fisher, Timothy S. ;
Hu, Hanping .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
[8]   A metallization and bonding approach for high performance carbon nanotube thermal interface materials [J].
Cross, Robert ;
Cola, Baratunde A. ;
Fisher, Timothy ;
Xu, Xianfan ;
Gall, Ken ;
Graham, Samuel .
NANOTECHNOLOGY, 2010, 21 (44)
[9]   Nanometre-scale electronics with III-V compound semiconductors [J].
del Alamo, Jesus A. .
NATURE, 2011, 479 (7373) :317-323
[10]   FATIGUE LIFE OF LEADLESS CHIP CARRIER SOLDER JOINTS DURING POWER CYCLING [J].
ENGELMAIER, W .
IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1983, 6 (03) :232-237