Minimal Mass Design of Tensegrity Structures

被引:11
作者
Nagase, K. [1 ]
Skelton, R. E. [2 ]
机构
[1] Wakayama Univ, 930 Sakaedani, Wakayama, Japan
[2] Univ Calif San Diego, San Diego, CA 92093 USA
来源
SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 | 2014年 / 9061卷
关键词
Tensegrity; Minimal Mass; Convex Optimization;
D O I
10.1117/12.2044869
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper provides a unified framework for minimal mass design of tensegrity systems. For any given configuration and any given set of external forces, we design force density (member force divided by length) and cross-section area to minimize the structural mass subject to an equilibrium condition and a maximum stress constraint. The answer is provided by a linear program. Stability is assured by a positive definite stiffness matrix. This condition is described by a linear matrix inequality. Numerical examples are shown to illustrate the proposed method.
引用
收藏
页数:12
相关论文
共 14 条
[1]  
[Anonymous], P 3 INT C SPAC STRUC
[2]  
[Anonymous], 1986, THESIS
[3]  
[Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[5]  
Fuller R.B., 1962, US Patent, Patent No. [3063521, 3063521A]
[6]   Tensegrity frameworks: Static analysis review [J].
Juan, Sergi Hernandez ;
Tur, Josep M. Mirats .
MECHANISM AND MACHINE THEORY, 2008, 43 (07) :859-881
[7]   Algebraic tensegrity form-finding [J].
Masic, M ;
Skelton, RE ;
Gill, PE .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2005, 42 (16-17) :4833-4858
[8]  
Sadao S., 1996, INT J SPACE STRUCTUR, V11, P37
[9]  
Schek H.-J., 1974, Computer Methods in Applied Mechanics and Engineering, V3, P115, DOI 10.1016/0045-7825(74)90045-0
[10]  
Skelton R., 1998, A Unified Algebraic Approach to Linear Control Design