Parameter Estimation for Nonlinearly Parameterized Gray-Box Models

被引:0
作者
Goel, Ankit [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
来源
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC) | 2018年
关键词
KALMAN FILTER; STATE; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many applications involve gray-box models, where the structure of the dynamics as a function of the parameters is known, but the values of the parameters are unknown. Nonlinear estimation algorithms, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are typically applied to these problems. As an alternative approach, this paper uses retrospective cost model refinement (RCMR), which optimizes a retrospective cost function to update the gain of the estimator. In this paper, we investigate RCMR by estimating a single unknown parameter that may appear nonlinearly in linear and nonlinear systems.
引用
收藏
页码:5280 / 5285
页数:6
相关论文
共 16 条