On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems

被引:9
作者
van Ackooij, Wim [1 ]
de Oliveira, Welington [2 ]
Song, Yongjia [3 ]
机构
[1] EDF R&D OSIRIS, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
[2] PSL Res Univ, MINES ParisTech, CMA, Sophia Antipolis, France
[3] Clemson Univ, Clemson, SC USA
基金
美国国家科学基金会;
关键词
Normal solution; SDDP algorithm; Stochastic optimization; Nonsmooth optimization; BUNDLE METHODS; LINEAR-PROGRAMS; CUTTING-PLANE; OPTIMIZATION; ALGORITHM; CONVERGENCE; UNCERTAINTY; ORACLES;
D O I
10.1007/s10589-019-00104-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing iterates during the solution process. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. Numerical experiments on a hydrothermal scheduling problem indicate that our algorithms are competitive with the state-of-the-art approaches such as multistage regularized decomposition, nested decomposition and stochastic dual dynamic programming.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 54 条
[1]  
[Anonymous], P 24 HUNG OP RES C V
[2]  
[Anonymous], 2002, 14 PSCC
[3]   REGULARIZED DECOMPOSITION OF HIGH-DIMENSIONAL MULTISTAGE STOCHASTIC PROGRAMS WITH MARKOV UNCERTAINTY [J].
Asamov, Tsvetan ;
Powell, Warren B. .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) :575-595
[4]  
Bank B., 1982, Non-linear Parametric Optimization, DOI DOI 10.1007/978-3-0348-6328-5
[5]   Non-euclidean restricted memory level method for large-scale convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2005, 102 (03) :407-456
[6]   DECOMPOSITION AND PARTITIONING METHODS FOR MULTISTAGE STOCHASTIC LINEAR-PROGRAMS [J].
BIRGE, JR .
OPERATIONS RESEARCH, 1985, 33 (05) :989-1007
[7]   Convergent cutting-plane and partial-sampling algorithm for multistage stochastic linear programs with recourse [J].
Chen, ZL ;
Powell, WB .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (03) :497-524
[8]   A DESCENT ALGORITHM FOR MINIMIZING POLYHEDRAL CONVEX-FUNCTIONS [J].
CLARK, DI ;
OSBORNE, MR .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (04) :757-786
[9]   Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling [J].
de Matos, Vitor L. ;
Morton, David P. ;
Finardi, Erlon C. .
ANNALS OF OPERATIONS RESEARCH, 2017, 253 (02) :713-731
[10]   Level bundle methods for oracles with on-demand accuracy [J].
de Oliveira, W. ;
Sagastizabal, C. .
OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (06) :1180-1209