Thermodynamic Evaluation and Carbon Footprint Analysis of the Application of Hydrogen-Based Energy-Storage Systems in Residential Buildings

被引:20
作者
Adametz, Patrick [1 ]
Poetzinger, Christian [2 ]
Mueller, Stefan [3 ]
Mueller, Karsten [1 ]
Preissinger, Markus [2 ]
Lechner, Raphael [3 ]
Brueggemann, Dieter [2 ]
Brautsch, Markus [3 ]
Arlt, Wolfgang [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Biol Engn, Inst Separat Sci & Technol, Egerlandstr 3, D-91058 Erlangen, Germany
[2] Univ Bayreuth, Chair Engn Thermodynam & Transport Proc, Ctr Energy Technol, Univ Str 30, D-95440 Bayreuth, Germany
[3] Ostbayer Tech Hsch Amberg Weiden, Inst Energy Technol, Kaiser Wilhelm Ring 23a, D-92224 Amberg, Germany
关键词
carbon footprint; energy storage systems; hydrogen; residential buildings; thermodynamics; FUEL-CELLS; PHOTOVOLTAIC SYSTEMS; BATTERY SYSTEMS; METAL-HYDRIDES; POWER-SYSTEMS; HYBRID SYSTEM; PERFORMANCE; STRATEGIES; CARRIERS; ELECTROLYSIS;
D O I
10.1002/ente.201600388
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study represents a thermodynamic evaluation and carbon footprint analysis of the application of hydrogenbased energy storage systems in residential buildings. In the system model, buildings are equipped with photovoltaic (PV) modules and a hydrogen storage system to conserve excess PV electricity from times with high solar irradiation to times with low solar irradiation. Short-term storages enable a degree of self-sufficiency of approximately 60% for a single-family house (SFH) [multifamily house (MFH):38%]. Emissions can be reduced by 40% (SFH) (MFH: 30%) compared to households without PV modules. These results are almost independent of the applied storage technology. For seasonal storage, the degree of self-sufficiency ranges between 57 and 83% (SFH). The emission reductions highly depend on the storage technology, as emissions caused by manufacturing the storage dominate the emission balance. Compressed gas or liquid organic hydrogen carriers are the best options, enabling emission reductions of 40%.
引用
收藏
页码:495 / 509
页数:15
相关论文
共 59 条
[1]  
Adametz P., 2016, CHEM ENG TECHN UNPUB
[2]   Energetic evaluation of hydrogen storage in metal hydrides [J].
Adametz, Patrick ;
Mueller, Karsten ;
Arlt, Wolfgang .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (13) :1820-1831
[3]   Efficiency of low-temperature adsorptive hydrogen storage systems [J].
Adametz, Patrick ;
Mueller, Karsten ;
Arlt, Wolfgang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) :15604-15613
[4]   Performance of a stand-alone renewable energy system based on energy storage as hydrogen [J].
Agbossou, K ;
Kolhe, M ;
Hamelin, J ;
Bose, TK .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (03) :633-640
[5]   Sodium alanate hydrogen storage system for automotive fuel cells [J].
Ahluwalia, R. K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (09) :1251-1261
[6]   Bounding material properties for automotive storage of hydrogen in metal hydrides for low-temperature fuel cells [J].
Ahluwalia, R. K. ;
Peng, J. -K. ;
Hua, T. Q. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) :14874-14886
[7]  
[Anonymous], 2014, GEMIS V 4 9
[8]  
[Anonymous], 2013, MATLAB R2013B
[9]  
[Anonymous], 2013, ADV ENERGY ENG
[10]   Energy Storage Technologies as Options to a Secure Energy Supply [J].
Ausfelder, Florian ;
Beilmann, Christian ;
Bertau, Martin ;
Braeuninger, Sigmar ;
Heinzel, Angelika ;
Hoer, Renate ;
Koch, Wolfram ;
Mahlendorf, Falko ;
Metzelthin, Anja ;
Peuckert, Marcell ;
Plass, Ludolf ;
Raeuchle, Konstantin ;
Reuter, Martin ;
Schaub, Georg ;
Schiebahn, Sebastian ;
Schwab, Ekkehard ;
Schueth, Ferdi ;
Stolten, Detlef ;
Tessmer, Gisa ;
Wagemann, Kurt ;
Ziegahn, Karl-Friedrich .
CHEMIE INGENIEUR TECHNIK, 2015, 87 (1-2) :17-89