The Fourier transform of multiradial functions

被引:2
作者
Bernicot, Frederic [1 ]
Grafakos, Loukas [2 ]
Zhang, Yandan [3 ]
机构
[1] Univ Nantes, CNRS, Lab Jean Leray, F-44322 Nantes 3, France
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou, Zhejiang, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 175卷 / 01期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Multiradial function; Fourier transform;
D O I
10.1007/s00605-013-0565-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an exact formula for the Fourier transform of multiradial functions, i.e., functions of the form , in terms of the Fourier transform of the function on , where is either or .
引用
收藏
页码:43 / 64
页数:22
相关论文
共 15 条
[1]  
Bernicot F., BILINEAR BOCHN UNPUB
[2]  
Campbell L. L., 2002, Sampling Theory in Signal and Image Processing, V1, P25
[3]   The Marcinkiewicz multiplier condition for bilinear operators [J].
Grafakos, L ;
Kalton, NJ .
STUDIA MATHEMATICA, 2001, 146 (02) :115-156
[4]  
Grafakos L., 2008, GRADUATE TEXTS MATH, V249
[5]   On Fourier Transforms of Radial Functions and Distributions [J].
Grafakos, Loukas ;
Teschl, Gerald .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (01) :167-179
[6]  
Liflyand E, 1998, Z ANAL ANWEND, V17, P103
[8]   Operators on radial functions [J].
Schaback, R ;
Wu, Z .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :257-270
[9]   THE FOURIER-BESSEL SERIES REPRESENTATION OF THE PSEUDODIFFERENTIAL OPERATOR (-X-1D)(NU) [J].
SINGH, OP ;
PANDEY, JN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (04) :969-976
[10]  
Sneddon I.N., 1951, Fourier transforms