Elegant Ince-Gaussian beams

被引:67
作者
Bandres, MA [1 ]
机构
[1] Tecnol Monterey, Photon & Math Opt Grp, Monterrey 64849, Mexico
关键词
D O I
10.1364/OL.29.001724
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The existence of elegant Ince-Gaussian beams that constitute a third complete family of exact and biorthogonal elegant solutions of the paraxial wave equation is demonstrated. Their transverse structure is described by Ince polynomials with a complex argument. Elegant Ince-Gaussian beams constitute exact and continuous transition modes between elegant Laguerre-Gaussian and elegant Hermite-Gaussian beams. The expansion formulas among the three elegant families are derived. (C) 2004 Optical Society of America.
引用
收藏
页码:1724 / 1726
页数:3
相关论文
共 10 条
[1]  
Arscott F. M., 1967, P R SOC EDINBURGH A, V67, P265
[2]  
Arscott FM., 1964, Periodic Differential Equations: An Introduction to Mathieu, Lame and Allied Functions
[3]   Ince-Gaussian modes of the paraxial wave equation and stable resonators [J].
Bandres, MA ;
Gutiérrez-Vega, JC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (05) :873-880
[4]   Ince-Gaussian beams [J].
Bandres, MA ;
Gutiérrez-Vega, JC .
OPTICS LETTERS, 2004, 29 (02) :144-146
[5]   LIE THEORY AND SEPARATION OF VARIABLES .7. HARMONIC-OSCILLATOR IN ELLIPTIC COORDINATES AND INCE POLYNOMIALS [J].
BOYER, CP ;
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :512-517
[6]   GAUSSIAN-BEAM MODES BY MULTIPOLES WITH COMPLEX SOURCE POINTS [J].
SHIN, SY ;
FELSEN, LB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (05) :699-700
[7]   HERMITE-GAUSSIAN FUNCTIONS OF COMPLEX ARGUMENT AS OPTICAL-BEAM EIGENFUNCTIONS [J].
SIEGMAN, AE .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (09) :1093-1094
[8]  
Siegman AE., 1986, LASERS
[9]   PROPAGATION OF LIGHT-BEAMS BEYOND THE PARAXIAL APPROXIMATION [J].
TAKENAKA, T ;
YOKOTA, M ;
FUKUMITSU, O .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (06) :826-829
[10]   COMPLEX ARGUMENT HERMITE-GAUSSIAN AND LAGUERRE-GAUSSIAN BEAMS [J].
ZAUDERER, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (04) :465-469