Edge-Enriched Ultrathin MoS2 Embedded Yolk-Shell TiO2 with Boosted Charge Transfer for Superior Photocatalytic H2 Evolution

被引:174
作者
Wang, Wenchao [1 ,2 ,3 ]
Zhu, Sai [1 ,2 ]
Cao, Yingnan [1 ,2 ]
Tao, Ying [1 ,2 ]
Li, Xin [1 ,2 ]
Pan, Donglai [1 ,2 ]
Phillips, David Lee [3 ]
Zhang, Dieqing [1 ,2 ]
Chen, Ming [4 ]
Li, Guisheng [1 ,2 ]
Li, Hexing [1 ,2 ]
机构
[1] Shanghai Normal Univ, Shanghai Key Lab Rare Earth Funct Mat, Educ Minist Key, Shanghai 200234, Peoples R China
[2] Shanghai Normal Univ, Shanghai Key Lab Rare Earth Funct Mat, Int Joint Lab Resource Chem, Shanghai 200234, Peoples R China
[3] Univ Hong Kong, Dept Chem, Pokfulam Rd, Hong Kong, Peoples R China
[4] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
embedded; hydrogen evolution; molybdenum disulfide; time-resolved fluorescence kinetics; titanium dioxide; FEW-LAYER MOS2; HYDROGEN-PRODUCTION; ANATASE TIO2; BAND-GAP; EFFICIENT; NANOSHEETS; WATER; HETEROSTRUCTURE; ARCHITECTURES; CATALYST;
D O I
10.1002/adfm.201901958
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploring TiO2-photocatalysts for sunlight conversion has high demand in artificial photosynthesis. In this work, edge-enriched ultrathin molybdenum disulfide (MoS2) flakes are uniformly embedded into the bulk of yolk-shell TiO2 as a cocatalyst to accelerate photogenerated-electron transfer from the bulk to the surface of TiO2. The as-formed MoS2/TiO2 (0.14 wt%) hybrids exhibit a high hydrogen evolution rate (HER) of 2443 mu mol g(-1) h(-1), about 1000% and 470% of that of pristine TiO2 (247 mu mol g(-1) h(-1)) and bulk MoS2 decorated TiO2 (513 mu mol g(-1) h(-1)). Such a greatly enhanced HER is attributed to the exposed catalytic edges of the ultrathin MoS2 flakes with a robust chemical linkage (Ti-S bond), providing rapid charge transfer channels between TiO2 and MoS2. The catalytic stability is promoted by the antiaggregation of the highly dispersed MoS2 flakes in the bulk of yolk-shell TiO2. The exponential fitted decay kinetics of time-resolved photoluminescence (ns-PL) spectra illustrates that embedding ultrathin MoS2 flakes in TiO2 effectively decreases the average lifetime of PL in the MoS2/TiO2 hybrids (tau(ave) = 4.55 ns), faster than that of pristine TiO2 (approximate to 7.17 ns) and the bulk MoS2/TiO2 (approximate to 6.13 ns), allowing a superior charge separation and charge trapping process for reducing water.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature [J].
Agrawal, Abhay V. ;
Kumar, Rahul ;
Venkatesan, Swaminathan ;
Zakhidov, Alex ;
Yang, Guang ;
Bao, Jiming ;
Kumar, Mahesh ;
Kumar, Mukesh .
ACS SENSORS, 2018, 3 (05) :998-1004
[2]   Observation of Optical Band-Gap Narrowing and Enhanced Magnetic Moment in Co-Doped Sol-Gel-Derived Anatase TiO2 Nanocrystals [J].
Akshay, V. R. ;
Arun, B. ;
Manda, Guruprasad ;
Mutta, Geeta R. ;
Chanda, Anupama ;
Vasundhara, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (46) :26592-26604
[3]   In Situ Detection of Active Edge Sites in Single-Layer MoS2 Catalysts [J].
Bruix, Albert ;
Fuchtbauer, Henrik Gobel ;
Tuxen, Anders K. ;
Walton, Alexander S. ;
Andersen, Mie ;
Porsgaard, Soren ;
Besenbacher, Flemming ;
Hammer, Bjork ;
Lauritsen, Jeppe V. .
ACS NANO, 2015, 9 (09) :9322-9330
[4]   High-Performance Triphase Bio-Photoelectrochemical Assay System Based on Superhydrophobic Substrate-Supported TiO2 Nanowire Arrays [J].
Chen, Liping ;
Sheng, Xia ;
Wang, Dandan ;
Liu, Jie ;
Sun, Ruize ;
Jiang, Lei ;
Feng, Xinjian .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (49)
[5]   TiS2-Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Luo, Liu ;
Manthiram, Arumugam .
ACS ENERGY LETTERS, 2018, 3 (03) :568-+
[6]   Nano-Heteroarchitectures of Two-Dimensional MoS2@ One-Dimensional Brookite TiO2 Nanorods: Prominent Electron Emitters for Displays [J].
Devan, Rupesh S. ;
Thakare, Vishal P. ;
Antad, Vivek V. ;
Chikate, Parameshwar R. ;
Khare, Ruchita T. ;
More, Mahendra A. ;
Dhayal, Rajendra S. ;
Patil, Shankar I. ;
Ma, Yuan-Ron ;
Schmidt-Mende, Lukas .
ACS OMEGA, 2017, 2 (06) :2925-2934
[7]   Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion [J].
Fan, Xiaobin ;
Xu, Pengtao ;
Zhou, Dekai ;
Sun, Yifan ;
Li, Yuguang C. ;
Nguyen, Minh An T. ;
Terrones, Mauricio ;
Mallouk, Thomas E. .
NANO LETTERS, 2015, 15 (09) :5956-5960
[8]   One-Step Synthesis of Metal/Semiconductor Heterostructure NbS2/MoS2 [J].
Fu, Qundong ;
Wang, Xiaowei ;
Zhou, Jiadong ;
Xia, Juan ;
Zeng, Qingsheng ;
Lv, Danhui ;
Zhu, Chao ;
Wang, Xiaolei ;
Shen, Yue ;
Li, Xiaomin ;
Hua, Younan ;
Liu, Fucai ;
Shen, Zexiang ;
Jin, Chuanhong ;
Liu, Zheng .
CHEMISTRY OF MATERIALS, 2018, 30 (12) :4001-4007
[9]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[10]   Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis [J].
Jing, Lin ;
Zhu, Ruixue ;
Phillips, David Lee ;
Yu, Jimmy C. .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (46)