The finite state semi-Markov process is a generalization over the Markov chain in which the sojourn time distribution is any general distribution. In this article, we provide a sufficient stochastic maximum principle for the optimal control of a semi-Markov modulated jump-diffusion process in which the drift, diffusion, and the jump kernel of the jump-diffusion process is modulated by a semi-Markov process. We also connect the sufficient stochastic maximum principle with the dynamic programming equation. We apply our results to finite horizon risk-sensitive control portfolio optimization problem and to a quadratic loss minimization problem.
机构:
Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, AustraliaUniv Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
Cohen, Samuel N.
Elliott, Robert J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, CanadaUniv Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
机构:
Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, AustraliaUniv Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
Cohen, Samuel N.
Elliott, Robert J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, CanadaUniv Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia