Conformal Killing vector fields and a virial theorem

被引:14
作者
Carinena, Jose F. [1 ]
Gheorghiu, Irina [1 ]
Martinez, Eduardo [2 ,3 ]
Santos, Patricia [4 ,5 ]
机构
[1] Univ Zaragoza, Dept Theoret Phys, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Dept Appl Math, E-50009 Zaragoza, Spain
[4] Univ Coimbra, CMUC, P-3000 Coimbra, Portugal
[5] Polytech Inst Coimbra, ISEC, Coimbra, Portugal
关键词
virial theorem; Hamiltonian systems; symplectic manifolds; canonical transformations; NONHOLONOMIC LAGRANGIAN SYSTEMS; GEOMETRY; TRANSFORMATIONS; SYMMETRIES; EQUATIONS; DYNAMICS;
D O I
10.1088/1751-8113/47/46/465206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The virial theorem is formulated both intrinsically and in local coordinates for a Lagrangian system of a mechanical type on a Riemann manifold. An important case studied in this paper is that of an affine virial function associated with a vector field on the configuration manifold. The special cases of a virial function associated with a Killing, a homothetic, and a conformal Killing vector field are considered and the corresponding virial theorems are established for these types of functions.
引用
收藏
页数:18
相关论文
共 23 条
[1]   SPHERICALLY SYMMETRIC SIMILARITY SOLUTIONS OF EINSTEIN FIELD EQUATIONS FOR A PERFECT FLUID [J].
CAHILL, ME ;
TAUB, AH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 21 (01) :1-&
[2]   LAGRANGIAN SYSTEMS WITH CONSTRAINTS - A GEOMETRIC APPROACH TO THE METHOD OF LAGRANGE MULTIPLIERS [J].
CARINENA, JF ;
RANADA, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06) :1335-1351
[3]   Quasi-coordinates from the point of view of Lie algebroid structures [J].
Carinena, Jose F. ;
da Costa, Joana M. Nunes ;
Santos, Patricia S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (33) :10031-10048
[4]   Virial theorem in quasi-coordinates and Lie algebroid formalism [J].
Carinena, Jose F. ;
Gheorghiu, Irina ;
Martinez, Eduardo ;
Santos, Patricia .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (09)
[5]   CANONOID TRANSFORMATIONS AND MASTER SYMMETRIES [J].
Carinena, Jose F. ;
Falceto, Fernando ;
Ranada, Manuel F. .
JOURNAL OF GEOMETRIC MECHANICS, 2013, 5 (02) :151-166
[6]   A geometric approach to a generalized virial theorem [J].
Carinena, Jose F. ;
Falceto, Fernando ;
Ranada, Manuel F. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (39)
[7]  
Clausius R., 1870, Phil Mag, V40, P122, DOI DOI 10.1080/14786447008640370
[8]  
Collins G. W., 1978, Astronomy and Astro-physics Series, V7
[9]   NONHOLONOMIC LAGRANGIAN SYSTEMS ON LIE ALGEBROIDS [J].
Cortes, Jorge ;
de Leon, Manuel ;
Carlos Marrero, Juan ;
Martinez, Eduardo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :213-271
[10]   TANGENT BUNDLE GEOMETRY FOR LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3755-3772